
ABSTRACT
Competitive pressures and economic constraints are driving aircraft
manufacturers towards an ever-increasing exploitation of CFD for
design, optimisation and prediction of off-design conditions. Such
exploitation is favoured by rapid advances in meshing technology,
numerical algorithms, visualisation tools and computer hardware. In
contrast, the predictive capabilities of mathematical models of turbu-
lence are limited — indeed, are often poor in regions of complex
strain — and improve only slowly. The intuitive nature of turbulence
modelling, its strong reliance on calibration and validation and the
extreme sensitivity of model performance to seemingly minor varia-
tions in modelling details and flow conditions all conspire to make
turbulence modelling an especially challenging component of CFD,
but one that is crucially important for the correct prediction of
complex flows.

This article attempts to provide a broad review of the current
status of turbulence modelling for aeronautical applications, both
from physical and numerical points of view. The review is preceded
and underpinned by a discussion of key fundamental issues and
processes, based on the exact equations governing the Reynolds
stresses. The main body of the review begins with a discussion of all

important model categories, starting with algebraic models and
ending with Reynolds-stress-transport closures, with emphasis
placed on a discussion of the underlying principles in the context of
aerodynamic flows. This follows a review of key numerical issues
pertaining to the incorporation of turbulence models into advanced
computational schemes for compressible and incompressible flows,
based on both time-marching and pressure-Poisson solution tech-
niques. The performance of different classes of models is then
reviewed by reference to major validation studies undertaken over
the past two decades. A discussion of current capabilities in model-
ling unsteady turbulent flows, especially in the context of dynamic
stall and transonic buffet, forms the final element of the review.

1.0 INTRODUCTION
John D. Anderson’s fascinating book A History of Aerodynamics(1)

contains a single substantive entry on turbulence, relating Osborne
Reynolds’ pioneering work on the ‘criterion’ for laminar-to-turbu-
lent transition in pipe flow and on the statistical description of turbu-
lence by way of what is now known as ‘Reynolds decomposition and
averaging’(2). While the book deliberately avoids technical detail and
covers, in the main, the ‘pre-scientific’ era of man’s quest for
powered flight, the almost invisible profile of turbulence in the book
is not grossly unrepresentative of its position in main-stream aerody-
namics, in which most efforts continue to be directed towards
maximising lift and minimising drag. This is in stark contrast to fluid
mechanics in the context of mechanical, hydraulic and chemical
engineering, where turbulent mixing is often the mechanism of prin-
cipal interest from an operational point of view.

Most aerodynamic flows are associated with fast-moving, slender,
streamlined bodies. Such flows are characterised by low curvature,
large irrotational (‘inviscid’) regions in which the motion is dictated
by a balance between convection and pressure gradients and rela-
tively thin rotational (sheared) layers. Turbulence is usually only
important in the rotational parts — the boundary layers on the
surface of the body and the wakes that combine the boundary layers
following their separation from trailing edges. Any large-scale
vortices shed from wing tips or swept leading edges are essentially
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non-turbulent, except perhaps within their cores which are formed by
turbulent boundary-layer fluid. While the fundamental turbulence
mechanisms at play might be (indeed, are) complex, the aeronautical
engineer is usually only interested in a few global manifestations of
turbulence: the skin friction, the displacement thickness of the
boundary layer and its effect on the outer irrotational flow, and the
momentum defect in the wake. These quantities are essentially
dictated by a single statistical turbulence variable — the shear stress
in the (local) streamwise direction. Although the determination of
this stress is a non-trivial task, the focus on that single quantity, and
the fact that the state of turbulence changes only slowly in the flow
direction, allows highly simplified modelling approaches to be
adopted, which side-step much of the fundamental physics and lean
heavily on empirical correlations and calibration. Herein lies the
reason for the prevalence and persistence of some especially simple
turbulence models in aeronautical practice — models that reduce the
turbulence-closure problem to the determination of a scalar eddy
viscosity from an algebraic relationship or with the aid of a simple
differential equation that takes into account the transport of a repre-
sentative turbulence parameter.

Notwithstanding the above general categorisation, there are many
aeronautical applications in which turbulence plays a much more
influential role than in thin shear flows, and which require refined
modelling techniques to provide an acceptably realistic predictive
description. Many of these flows occur in off-design operational
conditions and when the boundaries of the aerodynamic-perfor-
mance envelope are approached or, indeed, breached. In many cases,
separation and recirculation are the key features that require resolu-
tion. Specific examples are: 
● shock-induced separation on transonic wings, afterbodies and

concave ramps and ahead of fins in supersonic flight; 
● high-lift and stalled aerofoils — especially multi-element config-

urations; 
● wing-body–fin-body junctions which provoke strong horseshoe

vortices and can included separation in the junction; 
● vortical separation from streamlined bodies (e.g. fuselage) at high

incidence; 
● VSTOL flight with vectored jets; 
● flow-control applications with vortex generators (e.g. fences or

jets); 
● dynamic stall in pitching and oscillating aerofoils; and 
● under-expanded supersonic jets, with particular emphasis on

spreading rate and infra-red visibility. 

With the last example excluded, the major practical importance of
turbulence arises from the fact that the sheared turbulent regions are
sufficiently thick to cause appreciable changes to the irrotational
flow around the load-bearing surfaces. In fact, in VSTOL applica-
tions, the highly turbulent impinging jets, the ensuing ground vortex
and short-circuit associated with hot-gas reingestion are the features
of primary concern to the operational performance and safety of the
aircraft. In the case of transonic and high-lift wings, the shock or
adverse pressure gradient acting on the suction-side boundary layers
lead to strong fluid deceleration, rapid boundary-layer thickening
and possibly separation, with consequent dramatic loss of lift and
increase in drag. The key process in wing–body-junction and vortex-
generator flows is the creation of a recirculation zone upstream of
the wing or VG and the formation of a horseshoe vortex within
which the transverse circulation redistributes streamwise
momentum, thus inhibiting separation in the junction or downstream
of the vortex generator.

The modelling challenges posed by the types of flow considered
above are rooted in the complexity of the strain fields and the high-
rates of change to which the flow as well as the turbulence fields are
subjected. If attention is initially restricted to statistically steady,
two-dimensional conditions, the complex flow features of primary
concern are the strong streamwise straining provoked by an adverse
pressure gradient (or a shock), separation, reattachment and post-
reattachment recovery. All are affected by the details of the turbu-

lence structure, not simply by a single shear stress. The response of
the decelerating boundary layer to the adverse pressure gradient, and
hence the location of separation, is dictated by the turbulent shear
stress (ρuv—) as well as the normal stresses (ρu

—2, ρv
—2). The importance

of the normal stresses is due to two interactions: first, the normal
stresses are dynamically active (i.e. unlike in thin shear flow, gradients
of the normal stresses contribute to the momentum balance); second,
the shear stress is sensitive to normal straining and streamline curva-
ture, and, as will be shown later, this linkage occurs via the normal
stresses which are themselves sensitive to streamwise, shear and
curvature-related straining. Near a wall, turbulence is highly
anisotropic, with v—2 << u—2. This anisotropy, induced by a combina-
tion of different production rates for the normal stresses and the
kinematic blocking effect of the wall, needs to be correctly captured
if the shear stress is to be evaluated accurately. As the flow
approaches separation, the behaviour of the near-wall layer departs
drastically from any universal law of the wall, and its detailed struc-
ture must be resolved, including that of the semi-viscous sublayer in
which viscosity affects turbulence. Similar comments apply to recir-
culation and reattachment regions. Thus, here too, the turbulent
normal stresses are dynamically active, and the turbulence is sensi-
tive to streamline curvature. A further complication in relation to
reattachment is that the turbulent state in this region depends sensi-
tively on the evolution of turbulence in the separated shear layer
about to reattach. Finally, the near-wall layer in the recovery region
combines the reattached shear layer and a new boundary layer
emanating from the reattachment point. This poses the problem of
how to deal with component flows containing very different scales,
reflecting the different history of these components. 

Much of the above discussion also applies to three-dimensional
flows, but a number of additional complications require considera-
tion. Many three-dimensional flows feature skewed boundary layers
in which the direction of the velocity vector changes rapidly as the
wall is approached. Coupled with this ‘rotation’ are rapid variations
in the shear-stress components associated with the shear strains
formed with the wall-parallel velocity components (however, they
are resolved within the chosen computational co-ordinate system)
and the wall-normal co-ordinate. Hence, even in fully attached
conditions, and even if the influence of the normal turbulent stresses
may be ignored, the task is now one of devising a turbulence closure
capable of returning two shear-stress components and their interac-
tion with skewness and curvature. When, in addition, closed or open
separation occurs — say, as a result of two boundary layers
‘colliding’ obliquely in the leeward side of a relatively thick curved
body, a boundary layer interacting with a fin or wing or two inter-
acting wall jets associated with twin-jet ground impingement —
streamwise vortices are generated, the size of which can be substan-
tially larger than the thickness of the boundary layers prior to their
interaction. In such circumstances, the multi-faceted coupling among
all stresses and strain components, as well as the interaction between
turbulence and the curvature associated with the transverse circula-
tion in the vortex, become influential. 

Unsteadiness introduces a fundamental and profound uncertainty
into the RANS framework. Reynolds-averaging, whether ensemble-
or time-based, presupposes that the flow is statistically steady. At the
very least, the time-scale associated with the organised unsteady
motion must be substantially larger than the time-scale of the turbu-
lent motion — or, in other words: the two time-scales must be well
separated. This condition may be satisfied, say, in low-frequency
dynamic stall, but perhaps not in flutter or buffet. From a purely
formal point of view, phase-averaging offers a rigorously valid route
to deriving a statistical framework for unsteady flow. However, in
practice, closure of the (phase-averaged) correlations is necessarily
identical or very similar to that adopted for the conventionally aver-
aged correlations, and this inevitably leads to models which are
formally identical to their steady counterparts. 

Strictly, the only fundamentally secure approach to unsteadiness is
via direct numerial simulation which resolves the entire spectrum of
turbulent motions in all details. However, at Reynolds numbers perti-
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nent to aerodynamic practice, the resource implications even of large
eddy simulations is prohibitive. A decisive element in the resource
equation is the fact that most turbulent aerodynamic flows occur close
to walls and are therefore strongly affected by viscous processes.
However, near a wall, the ‘large’, dynamically influential turbulent
scales are small, so that very dense meshes are required for a reason-
able resolution of the flow. To give an example, one conclusion
emerging from the recent EU project LESFOIL(3), which investigated
LES for high-lift aerofoils, is that the simulation of the marginally
separated, transitional flow around a single-element, high-lift aerofoil at
Re = 2 × 106 (based on chord) would require of order 100 million nodes
for a spanwise extent of only 10% of chord. These resources are
dramatically beyond what is economically tolerable in practice.

On the assumption that conventional turbulence models may be
applied to (a restricted range of) unsteady flows, the level of closure
may have important implications to predictive accuracy. Unsteadiness
increases the rate of change of all flow quantities and results, in partic-
ular, in a phase lag between the mean motion and the turbulence quan-
tities. A relevant parameter to consider is the ratio of the time scales of
the mean motion Ωk/ε, where k is the turbulence energy and ε is its rate
of dissipation and Ω is the frequency of the mean motion. As the
boundary layer is traversed towards the wall, this ratio declines rapidly,
given a fixed frequency of mean-flow oscillation. The implication is
that the turbulence structure close to the wall will adjust rapidly to the
external oscillation, so that a quasi-steady turbulence closure would be
expected to be adequate. However, towards the outer part of the
boundary layer, the turbulence field will not respond quickly to the
oscillation, and the turbulent stresses would tend to ‘freeze’, with a
consequent phase shift between the mean motion and the turbulence
field. To take this into account, a turbulence model needs to include
stress transport. Hence, unsteady flows can, in general, be expected to
benefit from second-moment closure, which entails a reduced level of
reliance on equilibrium assumptions. 

The above considerations, while far from comprehensive, should
suffice to justify the assertion that turbulence and turbulence model-
ling are important topics within the spectrum of subjects constituting
modern aerodynamics. The increasing reliance of aerodynamic
design and optimisation on accurate computational prediction
methods, especially in multi-component configurations and high-
load and off-design conditions, makes it imperative that appropriate
turbulence models are used in combination with accurate and effi-
cient numerical schemes which can cope with the complex, highly
non-linear mathematical elements of some of these models. The
adjective ‘appropriate’ is not necessarily synonymous with ‘most
advanced’ or ‘most general’. The essential point is that the capabili-
ties and limitations of different models are understood and that their
suitability for particular flows or classes of flows is appreciated. To
this end, the very first step that needs to be made is to elucidate the
fundamental interactions between turbulence and different flow
features, especially in terms of statistical quantities.

The present paper aims to provide an up-to-date review of the
current state-of-the-art of turbulence modelling for aeronautical
applications. The elucidation of the links between the turbulent
stresses and the mean flow is pursued in Section 2. This provides a
foundation for a review, in Section 3, of major modelling method-
ologies and model categories, in terms of their rationale, calibration,
range of application and limitations. Section 4 then considers numer-
ical methodologies, with particular emphasis placed on the efficient
implementation of turbulence models. Section 5 reviews model
performance for a range of applications. In the case of statistically
steady flow, the discussion is model-oriented; that is, the capabilities
of different model classes are examined for different flow conditions
and features. Unsteady flows are discussed separately, in view of
their rather special position within the RANS field and the relative
scarcity of related computational applications focusing on turbu-
lence-model performance.

2.0 FUNDAMENTALS OF STRESS-STRAIN
INTERACTIONS

The task of a turbulence model is to provide the Reynolds-averaged
Navier-Stokes equations with closure relations for the Reynolds
stresses ρuiuj

—– ≡ {ρu
—2, ρv

—2, ρw
—2, ρuv—, ρuw—, ρvw—}, where the left-hand

side is the Cartesian tensor representation of the stresses (i, j = 1, 2, 3)†.
‘Closure’ identifies the process by which the stresses are related to
known or determinable quantities: geometric parameters, flow scales
and strains. The strains play an especially prominent role in the
closure process, for they are the primary agency by which turbulence
is generated and sustained. An indication of the importance attached
to this linkage is provided by the Boussinesq stress-strain relation-
ship:

in which µt is the eddy viscosity, Ui = {U, V, W} is the velocity
vector, xi = {x, y, z} are the spatial co-ordinates, ρ is the density, δij
is the Knoecker delta — a unit tensor with unit diagonal and zero
off-diagonal elements — and k = 0⋅5(u—2 + v—2 + w—2) is the (kinematic)
turbulence energy. The right-most term in Equation (1) is required to
ensure that the normal stresses sum up to 2k in zero strain. For
incompressible flow, ∂Uk/∂xk = 0. Although the relationship in Equa-
tion (1) has serious defects, as will emerge shortly, it expresses the
basic fact that the level of turbulence activity (mixing) is intimately
associated with straining. It must be said, however, that turbulence
generally reacts slowly to external disturbances (including straining),
a fact inconsistent with the proposal in Equation (1).

An excellent basis for illuminating the interactions between
stresses and strains is the set of exact equations governing the evolu-
tion of the Reynolds stresses. This is also the best starting point for
constructing turbulence models which hold some promise of gener-
ality — a subject considered later. The equations can be derived by a
somewhat laborious, though otherwise straightforward, combination
of the Navier-Stokes equations and their Reynolds-averaged forms.
For present purposes, it is instructive to focus on simplified sets of
equations applicable to two particular incompressible flows: simple
shear, in which the only major strain is ∂U/∂y, and homogeneous
compression, in which ∂U/∂x = –2∂V/∂y = –2∂W/∂z is some prescribed
(negative) value. Both are ‘model flows’ — the former representing
any slowly evolving zero-curvature shear layer, and the latter a
decelerating flow approaching a stagnation point. The effect of addi-
tional features, such as curvature, rotation and wall-blockage, will be
considered later. The respective sets of equations for the relevant
(kinematic) stresses and the turbulence energy k are Equations (2)
and (3). In each equation, the left-handside is the evolution (rate-of-
change) term, while the right-handside terms represent, in that order,
generation, pressure-strain interaction, turbulent diffusion and dissi-
pation by viscous destruction. One minor approximation which has
been introduced into Equations (2) and (3) relates to the dissipation.
This process occurs at the smallest scales of turbulence (the smallest
eddies) and is assumed to be isotropic — that is: εu

–
2 = εv

–
2 = εw

–
2 = 2/3ε,

εuv
— = 0, where ε is the rate of turbulence-energy dissipation.
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From set (2) it is observed first that, in simple shear, the only normal
stress generated by the shear strain is u—2. The other normal stresses
are only finite because they receive a proportion of the turbulence
energy contained in u—2 via the redistributive pressure-strain process,
which tends to steer turbulence towards isotropy, {u

—2, v—2, w—2} → 2/3k,
and does not contribute to the turbulence energy. This ‘rich-poor’
relationship is the reason that sheared turbulence is strongly
anisotropic, with u—2 = O(3v

—2) = O(2w
—2). Set (2) further shows that the

shear stress — the quantity of primary interest — is generated by an
interaction between the cross-flow normal stress v

—2 and the shear
strain. This highlights the need to determine v—2 accurately — that is,
a good model will have to return a realistic description of anisotropy.
Because of the assumption that turbulence is isotropic in the smallest
scales (a good approximation at high Reynolds numbers, away from
walls), there is no dissipative mechanism for the shear stress.
However, the pressure-strain term provides a ‘sink’ for that stress,
which counteracts generation in harmony with the isotropisation
process; simple stress-balance considerations (analogous to Mohr’s
circle in Solid Mechanics) serve to show that the shear stress must
decline and eventually vanish as the normal stresses approach a
single value. 

Here, it is interesting to note that the above relationship between
uv— and ∂U/∂y provides some justification for the eddy-viscosity rela-
tion (1), applied to the shear stress

if νt is evaluated from νt ∝ v
—2 × (turbulent time scale) — a combina-

tion implying that the shear stress is proportional to its rate of gener-
ation, with the turbulent time scale (say, k/ε) providing dimensional
consistency. The same cannot be said, however, for the eddy-
viscosity relation applied to the normal stresses:

which are contrary to reality†, as expressed by set (2), and give iden-
tical values for the normal stresses, namely 2/3k.

Set (3) shows first that stagnation (deceleration) tends to elevate
the normal stress due to the (positive) generation –2u

—2∂U/∂x, and to
diminish the other two stresses, due to negative generation rates
v
—2∂U/∂x and w

—2∂U/∂x, respectively, thus causing substantial
anisotropy. Both effects are consistent, at least in principle, with the
eddy-viscosity relations. However, in quantitative terms, these rela-
tions provide a far too rigid linkage between the stresses and strain.
One reason is that the convective terms — the left-hand sides of the
equations in set (3) — are substantial and tend to depress the rate of
change in the stresses; in effect, there is a tendency for the stresses to
be ‘frozen’ so that the rate of their generation is not far from linearly
dependent on the strain. This is not an issue in simple shear strain for
which stress convection is insignificant. As a consequence, the rate
of turbulence-energy production is also close to being proportional
to the strain. That this behaviour is incompatible with the eddy-
viscosity concept becomes clear when the stresses in the production
terms of set (3) are replaced by the eddy-viscosity relations:

Set (6) reveals two major problems: first, the effect of the strain on
all normal stresses is to elevate them, irrespective of the sign of the
strain; second, as a result of the former, the production of turbulence
energy is seriously overestimated because all contributions are
unconditionally positive and quadratic in the strain. This constitutes
a major defect in the eddy-viscosity framework and is responsible
for serious predictive errors in normally straining flows — for
example, a boundary layer approaching separation or an obstacle.

With some first lessons having been extracted from considerations
for simple shear and normal strain, it is next instructive to broaden
the range of flow features to include curvature and wall-blockage.
The objective is to cover at least the majority of the key elemental
interactions which combine to give practically relevant flows. 

Considered first is the response of turbulence to the addition of
curvature to shear. This is pertinent to a curved boundary layer, a
curved shear layer following separation or a shear layer embedded in
a vortex. In a two-dimensional, curved, thin shear layer, in which the
primary shear strain is ∂U/∂y, the Reynolds-stress transport equa-
tions yield the production rates of the shear stress and cross-flow
normal stress, respectively, as: 
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where the secondary strain ∂V/∂x expresses streamline curvature. In
any shear layer, normal-stress anisotropy is high, since the only
normal stress generated by shear is that aligned with the stream-
wise direction. In a wall-bounded shear layer, v—2 is especially low
— typically, of order 0⋅2u

—2 — because of wall-blockage effects



(see later). It is thus evident that curvature strain in a boundary
layer has a disproportionately large influence on the level of
shear-stress production and hence on the shear stress itself. In the
case of a boundary layer on a convex wall, the curvature strain is
negative, and the overall result is a considerable attenuation in the
shear stress. This attenuation is further accentuated by the fact that
convex curvature tends to reduce v

—2 relative to u
—2. This emerges

from Equation (7) upon noting that the shear stress and the curva-
ture strain are both negative in a convex boundary layer, so that
the production Pv

–
2 is negative. Precisely the opposite arises in

concave boundary layers, in which turbulence is amplified by
curvature. Dramatic demonstrations of the major changes curva-
ture can cause, via turbulence, even to the primary mean-flow
characteristics are given by Jones and Manners(4) and Lai(5), both
in relation to the flow in a curved, faired diffuser. 

The origin of anisotropy in a free shear layer has previously
been identified by reference to the Equation set (2). It has also
been stated, in relation to curvature effects, that wall-blockage
tends to substantially increase the level of anisotropy at a wall.
This may be demonstrated by using Taylor-series expansions, in
terms of wall distance, for the turbulent velocity components

and then by examining the asymptotic variation of the stresses
formed by appropriate auto- or cross-multiplication of the appro-
priate Taylor series, followed by time-averaging. In Equation (8), the
coefficients a, b, c… are functions of time corresponding to the time-
dependence of the turbulent velocity components uk. An additional
constraint arising from the continuity principle is ∂u2/∂y = 0, so that,
for the u2 component, the lowest-order term in Equation (8) is
quadratic in y. This then leads to:

Hence, the wall-normal stress v—2 must decay much faster than the
other normal stresses (as well as k) — a process that increases the
level of anisotropy. Typical wall-normal variations of the Reynolds
stresses in a channel flow at a Reynolds number of 6,600, based on
maximum velocity and channel height, are given in Fig. 1. The
DNS data may safely be taken to represent the anisotropy faith-
fully. The figure also illustrates dramatic variations in the ability of
different models to return the stresses correctly, especially the
normal components. As might be expected, models based on the
direct closure of set (2) — i.e. Reynolds-stress-transport models —
perform especially well. At the other extreme, linear eddy-
viscosity models return here identical normal stresses (= 2/3k, see
Equation (5)), as does the ‘k – ε’ model in Fig. 1. The subject of
model performance will be considered later in the context of
related closure strategies.

Equation (8) also allows a statement to be extracted on the varia-
tion of the turbulent viscosity, as well as quantities such as dissipa-
tion rate, pressure-strain correlations and diffusion terms, as given in
sets (2) and (3). For example, for the viscosity, defined as

3.0 TURBULENCE MODEL CATEGORIES

3.1 General overview

There are three principal classes of models currently used in compu-
tations of practically relevant aerodynamic flows:
● linear eddy-viscosity models (LEVM);
● non-linear eddy-viscosity models (NLEVM); 
● Reynolds-stress models (RSM).
Some models do not fall neatly into any one of the above categories,
straddling two categories or containing elements from more than one
category. Thus, 
● explicit algebraic Reynolds-stress models (EARSM) combine

elements of NLEVM and RSTM; 
● the ‘V2F’ model of Durbin(6) (see also Parneix et al(7)) is essen-

tially a LEVM, but incorporates a simplified transport equation
for the normal stress perpendicular to streamlines (or the wall),
which serves as the turbulent velocity scale in the eddy-viscosity,
in preference to the turbulence energy. 

Other model types exist, but have not been used to any significant
extent for practical computations. These include: 
● the ‘Structure-Based Model’ of Kassinos et al(8);
● various model proposals derived from two-point correlation func-

tions (e.g. Cambon and Scott(9)).
● Multi-scale models which are based on a partitioning of the

turbulence-energy spectrum, each partition associated with a
different size range of eddies (e.g. Schiestel(10), Wilcox(11)). 

Within any one of the above major categories, there are dozens of
variants, and the LEVM category, being the simplest, contains
several sub-categories (see Section 3.2 below) and is especially
heavily populated with model variations, many differing from
other forms by the inclusion of minor (though sometimes very
influential) ‘correction terms’, or different functional forms of
model coefficient, or even through slight differences in the numer-
ical values of model constants. To a considerable degree, this
proliferation reflects a trend towards adopting or adhering to
simple (too simple) turbulence models for the modelling task at
hand and then adding ‘patches’ so as to ‘cure’ specific ills for
specific sets of conditions. Other not unimportant contributory
factors are insufficiently careful and excessively narrow validation,
yielding misleading statements on the predictive capabilities of
existing models, and the fact that publishing a ‘new’ model, rather
than a study quantifying the capabilities of an existing model, is
not only easier, but also gives greater prominence to the originator
whose name is customarily attached the model. The subsections to
follow review models in the top five categories listed above.

3.2 Linear eddy-viscosity models

3.2.1 Introductory considerations

All models in this category are based on the linear stress-strain relation-
ship (1). All are therefore afflicted with the defects identified in Section
2, almost irrespective of how the eddy viscosity is evaluated. Thus,
● they do not resolve normal-stress anisotropy (see Fig. 1);
● they do not account for transport of stresses (by convection and

diffusion — see sets (2) and (3)), but link rigidly the stresses to
the strain;

● they over-estimate the stresses at high strain rates;
● they do not respond correctly to curvature strain, normal straining

and rotation (though ad hoc patches help in some circumstances);
● they are appropriate for flows in which a single shear stress is the

dominant, dynamic link between turbulence and the mean-flow;
● they seriously misrepresent, when used in conjunction with eddy-

diffusivity/gradient-diffusion approximations, the heat fluxes,
except for the flux component normal to simple shear layers with
a dominant cross-layer temperature gradient. 
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and with uv—|y → 0 = O(y3), (∂u/∂y)|y → 0 = O(1), it follows that the
viscosity must decay cubically as the wall is approached.

. . . (10)



The fact that many aerodynamic flows involve rather thin, slowly
evolving shear layers, in which the shear stress is the only dynami-
cally active component, has given strong impetus to the use of linear
eddy-viscosity models in aerospace CFD. Indeed, the approaches
adopted to determining the eddy viscosity have also been especially
simple, often based on Prandtl’s(12) and von Karman’s(13) mixing-
length theory, dating back to 1925: 

with the above particular form of lm applicable to the fully turbulent
near-wall (log-law) region. Within the semi-viscous sublayer
(y+ ~< 50), lm needs to be multiplied by a ‘van Driest damping func-
tion’ of the form:

implicitely held to be entirely dictated by a local balance between
turbulence-energy production and dissipation (see last equation in
set (2)):

which is referred to as ‘local equilibrium’. The above equivalence
can be elucidated upon noting that dimensional reasoning suggests:

while experiments show that in the log-law region:

Substitution of Equations (14) and (15) into Equation (13) gives:
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Figure 1. Turbulent stresses in fully-developed channel flow at mean-flow Reynolds number of 6,600; LHS: comparisons between DNS data and two
Reynolds-stress-transport models (taken from Batten et al(77)); RHS: comparisons between DNS data and three non-linear eddy-viscosity models

(taken from Loyau et al(141)).
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which is evidently consistent with Equation (11). Combining Equa-
tions (13) and (15) also yields,

Hence, local equilibrium implies that the turbulence time scale (k/ε)
is a fixed factor of the mean-flow time scale.

Models closely related to Equation (11) are those of Cebeci and
Smith(14) and Baldwin and Lomax(15). The latter — an improvement
of the former — has been especially popular for modelling attached
aerodynamic flows, but has often been misused in separated shear
layers. Differences relative to Equations (11) and (12), introduced in
relation to the ‘inner’ near-wall layer, include the use of the mean
vorticity in place of the strain (immaterial in simple shear) and the
addition of an ‘outer’-layer (wake) eddy-viscosity approximation of
the form:

where C is a constant, FKleb is the Klebanoff intermittency function
and FWake is the wake parameter which is related to the position at
which the moment of absolute vorticity y|Ω| reaches a maximum.
Switching between the inner- and outer-layer formulations is
effected at the position at which the inner and outer eddy viscosities
reach the same value. A correction to Baldwin and Lomax’s outer-
layer formulation was suggested by Granville(16). An ad hoc, empir-
ical patch to the Baldwin-Lomax model (or any other algebraic
formulation), intended to account for separation, was proposed by
Goldberg(17), but is entirely unrelated to any fundamental physics
associated with the dynamics of separation.

As algebraic models of the above type are not appropriate for any
but simple attached boundary layers, close to the state of equilib-
rium, and depend upon an explicit prescription of the viscosity on
the basis of the distance from the wall, they are now regarded as
outdated and are not considered further herein.

Algebraic models are also referred to as ‘zero-equation’ models.
This designation identifies the fact that no transport equation is used
to determine the turbulent viscosity. More advanced classes of eddy-
viscosity models, referred to as ‘one-equation’ and ‘two-equation’
models, use, respectively, one differential equation or two to
describe the evolution of related turbulence scales from which the
eddy viscosity is evaluated. There is also a class designated ‘one-
half-equation’ models, because they combine a mixing-length-type
prescription across the flow with an ordinary differential equation
describing the streamwise evolution of the cross-flow maximum
shear stress to which the eddy-viscosity is related. 

The relationship between the eddy viscosity and other scales emerges
from dimensional considerations. Thus, dimensional analysis shows:

transport equation for a selected turbulence variable. In most models
that variable is the turbulence energy, but other quantities chosen
include the eddy viscosity, the turbulent Reynolds number (effec-
tively, the ratio of turbulent-to-fluid viscosity) and even the shear
stress itself. With isolated exceptions, one-equation models require,
either directly or indirectly, a prescription of the length scale or a
related quantity. This requirement is nearly as severe a limitation as
that applicable to algebraic models, and one-equation models do not,
therefore, generally display decisively superior predictive character-
istics in wall flows departing substantially from equilibrium, unless
specifically crafted by highly targeted calibration (e.g. via forcing
functions) for such conditions. While accounting for non-equilib-
rium processes to some extent, models that rely on a length-scale
prescription are not applicable to separated flows in which there is
no general or known relationship between the length scale and the
distance from the wall.

If k is chosen as the transported turbulence quantity, then the
differential equation adopted is:

This is a general form of the last equation in set (2) and arises upon a
summation of the exact Reynolds-stress-transport equations (see
later) for the normal stresses and a replacement of the exact diffusion
term (which contains unknown triple correlations uj

–
uk
–

uk
— and ujp

—) by a
gradient-diffusion model, with σk being the turbulent Prandtl
/Schmidt number for k.

Next, ε is replaced by ε = k3/2/L (see Equation (14)). It can readily
be shown that a combination of cµ ≡ (–uv

—/k)2 = 0⋅09 (see Equation
(15)) and the equilibrium relations imply:

There is no compelling reason, however, why the length scale in
Equations (21) and (22) need to be identical. Specific variations
were adopted by different modellers on the basis of calibration
against experimental data for key flows, such as channel and
boundary-layer flows. Thus, in Wolfshtein’s model(18):

while Norris and Reynolds(19) propose:

where y* ≡ (ycµ
1/4k1/2)/v. The use of y* instead of y+ in Equations (23)

and (24) is not a trivial matter. This replacement is enabled by the
availability of k and use of Equation (13) in conjunction with the
replacement uτ ← (uv

—)1/2. The advantage arising therefrom is that, in
non-equilibrium conditions (e.g. adverse pressure gradient), the state
of the semi-viscous sublayer does not scale well with uτ, but does so
much better with k1/2.

A third model of the above type is that of Hassid and Poreh(20).
This is, essentially, a corrected version of the Wolfshtein model and
reflects the recognition that, at the wall, the rate of dissipation must
be balanced by viscous diffusion of turbulence energy:
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where u′ is a turbulent velocity scale and L is a turbulent length scale
(eg the mixing length). The velocity scale is almost invariably
chosen to be k1/2 which is determined from a differential transport
equation. Unless the length scale is prescribed algebraically — as is
the case with one-equation models — a length-scale surrogate is
usually used, rather than L itself, the most popular surrogate vari-
ables being the dissipation rate ε = k3/2/L, the turbulent vorticity (or
specific dissipation rate) ω = ε/k = k1/2/L and the turbulence time
scale τ = k/ε = L/k1/2. Other variables adopted include the turbulence
enstrophy ζ = ω2, the root of the turbulent time scale g = τ1/2, the
turbulence Reynolds number Rt = k2/νε and the groups ε/k1/2 and kL.
The rationale for choosing some of these variables in preference to
others will be considered later.

3.2.2 One-equation models

One-equation models involve the solution of a single differential
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As k varies quadratically as the wall is approached (see Equation (9)), it
follows that ε is finite at the wall, namely ε|y → 0 = (2kν/y2)|y → 0.

A model by Mitcheltree et al(21) is yet another form closely akin to
that of Wolfshtein, but includes an extension intended to accommo-
date separation. The extension leans heavily on experimental obser-
vations of some similarity characteristics of the velocity profile
within the separated region. These are used to derive length-scale
prescriptions for the separated region equivalent to Equations (23)
and (24) (though without the damping terms) with pre-multiplying
coefficients which vary with the streamwise direction and depend
upon the (y-wise) maximum turbulence energy, the maximum strain
rate (or rather vorticity), the y-location of this maximum and the y-
location of the shear-stress maximum. When applied to the computa-
tion of shock-induced separation over the RAE 2822 aerofoil (Cook
et al(22), Case 10, the model is not found to give adequate results for
either shock location or pressure coefficient. 

Models by Baldwin and Barth(22), Spalart and Allmaras(24),
Menter(25) and Goldberg(26) are based on the solution of transport
equations for the turbulent Reynolds number Rt = k2/νε or the turb-
ulent viscosity, both quantities being closely related to each other.
The model of Menter will be considered at the very end of this
section, for reasons that will transpire in due course. The first model
is derived by a combination of the k- and ε-transport equations (see
next section), followed by simplifications applicable to equilibrium
conditions (Equation (13)) and some calibration by reference to the
algebraic Cebeci-Smith model. The result is an equation of the form:

from which the viscosity is then evaluated as:

where fµ1 and fµ2 are van Driest damping functions involving y+. One
advantage of this model is that it avoids an explicit prescription of
the length scale, although it does involve, explicitely, the distance
from the wall in the damping functions. This last restriction was
removed by Goldberg(27) who proposed a point-wise (‘local’) version
of the model which, for high Reynolds-number flows, is identical to
Baldwin and Barth’s parent form.

Spalart and Allmaras derived their model along much more intu-
itive, less formal lines than Baldwin and Barth, and rely heavily on
calibration by reference to a wide range of experimental data. The
model is built up in several stages, starting from a version for free
flows and extending this to near-wall flows at high and then low
Reynolds numbers, each stage involving calibration by reference to
key flows (mixing layers, wakes, flat-plate boundary layers). The
high-Reynolds-number version of the viscosity equation for near-
wall flows has the form:

subjected to adverse and favourable pressure gradient. Indeed, this
has been the observation made by users of the model, and the model
has therefore gained significant popularity among CFD practitioners
whose main concern is with attached boundary-layer flows and thin
free shear flows. Spalart and Allmaras demonstrate themselves that
their model is able to provide a fair representation of shock-induced
separation on the RAE 2822 (Case 10) aerofoil. While the model is
not intended for separated flows, the fact that it captures the behav-
iour of the boundary layer as it approaches separation is crucial to
the prediction of the separation point and hence shock location. It is
noted, however, that the model returns poor results, in common with
many other models, in the post-shock region of the RAE 2822 aero-
foil. There are also indications that the response of the model to mild
adverse pressure gradient is too strong.

An early one-equation model of Bradshaw et al(28) for the trans-
port of the shear-stress is considered next, mainly for its relevance to
Menter’s(25) one-equation eddy-viscosity-transport model and to his
related two-equation model (Menter(29)) used extensively in compu-
tational aerodynamics and discussed in the next section. The model
is based on Bradshaw et al’s observation that the shear stress in
shear flows is more closely connected to other turbulence parame-
ters, especially the turbulence energy, than to the mean-velocity
profile. An implication of this observation is that the eddy-viscosity
relation (4) is not a good approximation of reality. Instead, Brad-
shaw et al propose:

with a expected to be a function of y/δ, but chosen to be a constant
(= 0·15). In fact, this relationship has been used already, Equation
(15), but only in relation to the log-law region, in which 
case a = cµ

1/2 = 0·3. Bradshaw et al suggest that this should be used
more generally. They then proceed to derive a shear-stress-transport
equation by inserting Equation (29) into the turbulence energy equa-
tion (a general form of the last equation in set (2)), approximating
the diffusion of the shear stress to be in proportion to the diffusion of
k and replacing the dissipation by uτ

3/L (uτ ≡ √–uv
—), a substitution

equivalent to Equations (14) and (15). 
It is instructive, at this stage, to juxtapose Equations (4) and (29).

Eliminating lm from Equations (21) and (22) gives:

which is, in fact, the expression used in conjunction with two-equa-
tion k – ε models, covered later. Eliminating, for thin shear flow, the
shear strain from

gives:
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where S is the strain rate (for which Spalart and Allmaras actually
use the vorticity), d is the distance from the wall and fw is a function
calibrated by reference to a range of data for equilibrium, adverse-
and favourable-pressure-gradient boundary layers. The function fw is
of particular importance because it controls the ‘destruction’ of νt at
the rate calibrated to give the correct behaviour in conditions
departing from equilibrium. The extension to low Reynolds numbers
involves the introduction of additional damping functions with argu-
ment νt/ν (in effect, a turbulent Reynolds number).

It may be argued that Spalart and Allmaras’ model, while having a
rather weak formal foundation, contains an especially rich body of
empirical information, which is likely to make it applicable to a fair
range of attached and thin free-shear flows, including those
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This demonstrates that the eddy-viscosity framework tends to return
high levels of shear stress in strong straining in which the production-
to-dissipation ratio is high — a consequence of the rigid linkage of
the shear stress to the strain. In contrast, Equation (29) suggests that
the shear stress is not sensitive to the production-to-dissipation ratio.
This relationship is exploited in Menter’s(25) model which is considered
last.

Following Baldwin and Barth(23), Menter derived an equation for
the eddy viscosity, Equation (30), by combining the transport equa-



tion for k and ε. Insertion of Equation (30) into the result allows the
replacement of ε, which leaves k and νt as unknowns. The former is
then eliminated using Bradshaw’s relation in Equation (29), with uv

—

being related to the eddy viscosity via (4). The coefficients are deter-
mined from those of the parent two-equation k – ε model of Jones
and Launder(30) (see next section), with an extension to low-
Reynolds-number flows effected by the provision of ‘pragmatic’
damping functions pre-multiplying the eddy viscosity and the turbu-
lence-production terms. Because of the use of Equation (29), there is
no need to prescribe a length scale, and the model would appear to
be valid for any flow. Indeed, Menter provides the following gener-
alisation of the thin-shear-flow form:

in which 

However, it needs to be born in mind that the key relation in Equa-
tion (29), used by Menter to close the eddy-viscosity-transport equa-
tion, is rooted in thin-shear-flow considerations, so that the generali-
sation in Equation (34) has unclear physical implications in
non-equilibrium conditions. Nevertheless, Menter demonstrates that
the equation performs as well as (indeed, slightly better than) the
equivalent two-equation k – ε model for two particular separated
flows. 

3.2.3 Half-equation models

Half-equation models combine algebraic eddy-viscosity prescriptions
of the type considered in Section 3.2.2 with an ordinary differential
Equation which describes the streamwise evolution (i.e. transport) of
a scale to which the algebraic cross-flow prescription is sensitised.
Although less general than the previous category, half-equation
models are considered at this point because they make use of Brad-
shaw’s concept of shear-stress transport, as described by the turbu-
lence-energy transport equation (20) incorporating Equation (29). 

The most widely used formulation is than of Johnson and King(31).
In common with algebraic models, such as that by Cebeci and
Smith(14), a two-(inner/outer) layer algebraic prescription is adopted
for the eddy viscosity (see Equations (11), (12) and (18)), with the
effective eddy viscosity evaluated from the exponential blending
function:

rather than by hard switching between the two layers. The key new
feature is the evaluation of the inner-layer viscosity from:

The above model has been effective in predicting decelerating and
incipiently separating boundary layers, shock–boundary-layer inter-
action, especially shock-induced separation, and the flow around
high-lift aerofoils (e.g. NACA 4412(32) and Aerospatiale A(33)) where
it has been found to give a good representation of the separation
point, the effect of separation on the surface pressure and the
boundary-layer profiles (see Section 5.3). However, the model has
also been observed to display deficiencies in near-equilibrium condi-
tions in which it responds too sensitively to adverse pressure
gradient. These weaknesses motivated the introduction of modifica-
tions into the model by Johnson and Coakley(34), while a three-
dimensional extension was formulated by Abid et al(35).

3.2.4 Two-equation models

In complex strain, away from the immediate vicinity of a wall, the
turbulent length scale does not, nor is expected to, scale with the
wall distance. Neither is there, in general, any other global flow
quantity (e.g. shear-layer thickness) which offers itself for scaling.
Rather, the length scale must be expected to be governed by local
turbulence mechanisms which evolve in space and time. This
implies the need to determine the length scale from its own transport
equation. This is, as it turns out, no mean task — one that is gener-
ally regarded as a major, if not the principal, obstacle to improving
the predictive realism of turbulence models, not only within the
eddy-viscosity framework, but also in the context of more elaborate
closure approaches.

The foundation for a closed equation for the length scale is an
exact transport equation that can be derived for the dissipation rate 

or any other quantity of the form ξ ≡ kaεb. This derivation involves a
laborious combination of derivatives of the Navier-Stokes equations
(see Davidov(36)), and results in an equation of the form:

LESCHZINER & DRIKAKIS TURBULENCE MODELLING AND TURBULENT-FLOW COMPUTATION IN AERONAUTICS 357

D
D
ν

ν
ν

ν
ν
σ

ν
ν

t
t

t

j j

t t

jt
C f S C

S
S
x x x

= − ∂
∂

⎛

⎝⎜
⎞

⎠⎟
+ ∂

∂
+⎛

⎝⎜
⎞
⎠⎟

∂
∂

⎛

⎝
1 1 2

2

2

2

⎜⎜
⎞

⎠⎟
. . . (34)

S U
x

U
x

U
x

i

j

i

j

j

i

=
∂
∂

∂
∂

+
∂
∂

⎛

⎝⎜
⎞

⎠⎟

ν ν
ν

νt to
ti

to

= −
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥1 exp . . . (35)

ν κ νµti mf y u= −( )2
1

2
. . . (36)

which arises, in principle, from the eddy-viscosity relation, Equation
(22), and Bradshaw’s relation in Equation (29), combined with a van
Driest damping function. In Equation (36) the shear stress is the
cross-flow maximum value, hence a one-dimensional function varying
in the streamwise direction. This maximum is determined from an
ordinary differential equation for the maximum turbulence energy
into which Equation (29) is inserted. In principle, this is analogous to
the process adopted by Bradshaw et al(28) for deriving their one-
equation shear-stress-transport model (see Section 3.2.1). The outer
eddy viscosity is also sensitised to uv

—
m via a non-equilibrium function.

†Richardson, in 1922(38), gave the following witty, though imprecise, descrip-
tion of this process: “Great whirls have little whirls that feed on their velocity
and little whirls have lesser whirls and so on to viscosity.” 

ε =
∂
∂

∂
∂

u
x

u
x

i

j

i

j

. . . (37)

∂
∂

+
∂
∂

= + −
==
∑∑ε ε

εε ε εt
U
x

P Dj

j
k l

lk
, ,

,, 1 31 4

which contains numerous groups of correlations interpretable as
production (Pε), diffusion (Dε) and destruction (εε). The left-hand
side represents convection and arises precisely as written in Equation
(38). Term-by-term modelling of this equation has been attempted
by Rodi and Mansour(37) on the basis of DNS data, but has not been
really productive in terms of creating a working model superior to
more established forms. A key problem with Equation (38) is that
the processes on the right-hand side occur in the smallest scales of
turbulence which interact with fluid viscosity. At high Reynolds
numbers, these scales are very far from the energetic scales associ-
ated with the turbulent stresses and the energy. Yet, the behaviour of
the dissipation generally follows closely that of the large scale
processes (see, for example, the equilibrium relation in Equation
(13)), the implication being that the modelling of the dissipation
equation must be based on those adopted for the large-scale
processes. 

A concept that is central to a rational closure of the ε-equation, on
the basis of large-scale dynamics, is that the turbulence energy
generated by the interaction between the energetic eddies and the
mean flow ‘cascades’ down the ‘inertial scale range’ towards the
dissipative range†. This ‘pipeline’ concept thus allows us to model, if
only intuitively and globally, the rate of change of dissipation as an

. . . (38)



imbalance of terms associated with the large-scale energy that flows
into the ‘pipeline’. 

The first practical forms of a dissipation equation were proposed
by Harlow and Nakayama(39) and Hanjalic(40). The basic form (Jones
and Launder(30)) used in conjunction with the k-equation (20) and
expression (30) for the eddy viscosity is:

Its applicability to low-Reynolds-number near-wall flows necessi-
tates the introduction of damping functions and additional terms that
procure the correct near-wall behaviour, and it is the need for this
(non-trivial) extension that has spawned numerous model variations
(Jones and Launder(30), Launder and Sharma(41), Hoffman(42), Lam
and Bremhurst(43), Chien(44), Nagano and Hishida(45), Myong and
Kasagi(46), So et al(47), Huang and Coakley(48), Orszag et al(49), Kawa-
mura and Kawashima(50) and Lien and Leschziner(51)). It is informa-
tive, ahead of reviewing some of these extended models, to comment
on a few fundamental aspects of modelling the dissipation rate.

First, the Taylor-series analysis that led to relations in Equation
(9), can readily be applied to Equation (37) to show that the wall-
asymptotic behaviour of the dissipation is ε = O(1). This has already
been demonstrated through Equation (25). In fact, DNS simulations
for channel flow by Moser et al(52) and others show that ε reaches a
maximum at the wall (εν/uτ

3 ≈ 0⋅16). The fact that the wall value is
unknown, but needs to be determined via the compatibility condition
Equation (25) is numerically disadvantageous and has led to the
adoption of the ‘homogeneous’ dissipation

as the dependent variable, with its wall-asymptotic variation arising
as O(y2). This is the variable used in the models of Jones and
Launder(30), Launder and Sharma(41) and Chien(44). Second, it is
noted that the turbulent viscosity, as defined by Equation (30), has
the asymptotic behaviour νt = O(y4), but should vary as νt = O(y3)
(see Equation (10)). It follows that Equation (30) must be multiplied
by a function fµ = O(y–1). If ε~ is used instead of ε in the eddy-
viscosity relation (10) then k2/ε~ varies as O(y2), so that fµ = O(y).
Third, the exact destruction term in the dissipation equation 

can be shown to vary as εε = O(1). However, its model in Equation
(39) varies as εε = O(y–2). Hence, this term must be multiplied by a
function fε2 = O(y2). If ε~ is used, then the near-wall simplification of
Equation (39),

The approximately 20 variants of the k – ε model documented in
the literature differ in respect of the following features:
● the use of ε or ε~ or a mixture of both;
● the details of the damping functions fµ and fε;
● the precise numerical values of the constants cµ, Cε1, Cε2, σk and σε;
● the presence or absence of additive correction terms on the right-

hand side of Equation (39).
It is not possible to give here a detailed account of the many existing
model variants, and only some general distinguishing characteristics
are indicated below. Detailed reviews can be found in Patel et al(53),
Michelassi et al(54) and Mansour et al(55).

The adoption of ε~ necessitates the replacement ε = ε~ + 2ν(∂k
1/2/∂xj)2

(see Equation (40)) in the k-equation. Some models use the equiva-
lent corrections 2νk/y2 or (ν/y)(∂k/∂y) which are numerically more
benign, but require the valuation of the wall distance (i.e. are ‘non-
local’).

There are significant differences in respect of the damping func-
tions fµ, fε2 among different model variations, although almost all are
based on exponential-decay laws of the form (1 – αexp(–βArgµ)),
where Argµ = {y+ = yuτ/ν, y* = yk

1/2/ν, Rt = k2/νε~}. Some models also
include exponential functions fε1, although most adopt fε1 = 1.
Several (indeed, most) models do not obey the limiting behaviour in
all respects (not even for uv

—) indicated above by reference to exact
constraints (see the review of Patel et al(53) where eight models are
reviewed in detail). Rather, damping functions are designed and
optimised by calibration against experimental behaviour. For
example, fε2 is calibrated to return the correct decay law for isotropic
turbulence at low Reynolds numbers — a rate twice as high as that
used to initially calibrate Cε2. Another example is the model of Lien
and Leschziner(51) in which the asymptotic near-wall behaviour is
made to mimic the length-scale variation prescribed as part of the
Norris-Reynolds(19) one-equation model. One important distinction
between different forms of Argµ is their ‘locality’ or ‘non-locality’.
The first two forms involve the distance from the wall, while the
third does not, thus offering particular advantages in complex
geometries and non-orthogonal or unstructured numerical grids. 

In terms of predictive quality, there are rarely dramatic differences
among aerodynamic quantities predicted by different variants of the
k – ε model (unless some of the fixes indicated below are added).
Perhaps the message contained in this observation is that the wall-
asymptotic behaviour of a model is not of great importance to the
principal mean-flow quantities in comparison to other issues. In
contrast, the skin-friction and heat-transfer coefficients and the
behaviour of relaminarising flows are materially sensitive to the
details in the viscous sublayer.

The precise numerical values of the coefficients, especially Cε1
and Cε2, are of major importance to the predictive performance of
two-equation models, and this has been the source of much uncer-
tainty when trying to assess the inherent qualities of some model
variations relative to others. In the large majority of models 
cµ = 0⋅09, σk = 1⋅0, σε = 1⋅3. All models should obey the compati-
bility condition:
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implies the need for fε2 = O(y–2). Some model variants use the
product εε~ in the destruction term, in which case consistency in the
wall-asymptotic behaviour implies fε2 = O(1). Finally, the exact
production of dissipation can be shown to vary as O(y). Its modelled
form in Equation (39) is also O(y), implying that any corrective
function appended to this term should vary as fε1 = O(1) if ε is
retained as the subject of Equation (39). However, use of ε~ clearly
implies fε1 = O(y–2). It is seen, therefore, that the particular choice of
the dissipation variable has substantial implications to the nature of
the damping functions which need to be used to ensure wall-asymptotic
consistency between the exact and modelled terms.

2

1 2C C
cε ε

ε µ

κ= −
σ

. . . (43)

which can be derived upon the insertion of the log-law and equilib-
rium constraints into the ε-equation. Not all do so, however, and a
1% deviation from Equation (43) leads to a 5-7% change in the
spreading rate of a shear layer. The constant Cε2 is determined, from
experimental data for the decay of turbulence behind a grid (k ∝ x–1⋅25

at high turbulent Reynolds number), to be around 1⋅92, which then
gives Cε1 = 1⋅44 from Equation (43), but there is some uncertainty
about the correct decay rate, and other values have been used. The
final choice of the constants, subject to the constraint of Equation
(43), is a compromise, based on computer optimisation, and can
change the performance of the model considerably.



Several models include additive correction terms in Equation (39),
designed either to procure the requisite near-wall variation of ε or to
force the equation to yield variations which improve agreement with
experimental data. The most influential correction is one that coun-
teracts the seriously detrimental tendency of the ε-equation to return,
in adverse pressure gradient, excessive length scale values k1·5/ε —
much larger than correspond to the equilibrium variation (κc–3/4

η /y) in
the log-law region. Two alternative correction forms proposed by
Yap(56) and Jakirlic and Hanjalic(57), respectively, are:

The latter is again ‘local’, in that it does not require the wall distance
to be determined. In both, l = k1·5/ε, and both are ‘source’ terms in
the ε-equation, which force a reduction (or moderation) in the deviation
of the length scale from its equilibrium value. A form closely akin to
Equation (45) has been proposed by Iacovides and Raisee(58) in the
context of second-moment closure. Other corrections include one by
Hanjalic and Launder(59), designed to conteract the erroneously high
production of turbulence energy in irrotational straining (see Equa-
tion (6)), and a correction by Yakhot et al(60), in the context of a
RNG-theory-based k – ε model, which has the form of a strain-
dependent source term in the ε-equation, resulting in a reduction of
the length scale at high strain rates. A ‘harsh’ correction by Kato and
Launder(61), also designed to alleviate the excessive production of
turbulence energy, entails the replacement:

where S is the strain rate and Ω is the vorticity. This correction aims
specifically at stagnation flows in which S is large while Ω is low, in
which case turbulence production is suppressed. However, the correc-
tion is not valid for general shear flow (except in thin layers, where 
S ≈ Ω), and is also formally inconsistent with the eddy-viscosity 
relation which inevitably leads to Pk = νtS2. A more well-founded
correction, aiming to address both the wrong response to normal
straining as well as the excessive turbulence generation in high strain
rates (reflected by the disparity between Equations (29) and (33)), is
that proposed by Liou et al(62). Based on realisability constaints, cµ is
sensitised to invariants of the strain and vorticity tensors (see Equa-
tion (78) below) in such a way that cµ declines progressively beyond
a strain corresponding to the turbulence-equilibrium condition Pk = ε.
While this correction is different, in principle, from that of Menter(25),
the objective is the same, in terms of predictive performance, and
Liou et al demonstrate its effectiveness by reference to computations
for transonic bump and supersonic ramp flows. 

Yet another type of ad hoc correction is that designed to sensitise
the eddy viscosity to curvature. It was shown in Section 2, by refer-
ence to Equation (7), that sensitivity of turbulence to curvature is
rooted in normal-stress anisotropy and its selective interaction with
particular strain components. None of this is represented within the
eddy-viscosity framework. Curvature was shown to stabilise or
destabilise turbulence, depending on the sense of curvature relative
to the principal shear strain. Parameters that can be used to mimic
the effects of curvature are the ‘gradient’ and ‘flux’ Richardson
numbers (Launder et al(63), Rodi(64), Rodi and Scheuerer(65)), defined
respectively as:

in which R is the radius of streamline curvature. The latter parameter
represents the ratio of curvature-related turbulence-energy produc-
tion to the total production. The parameters have been used to intro-
duce additional source/sink term of the form

into the ε-equation. However, both corrections are only tenable in
curved boundary layers or swirling flows, in which the local radius
of curvature can be readily estimated from the curvature of the wall
and the radial distance from the vortex centre, respectively. In more
complex flows, neither is a practical or promising patch. An alterna-
tive type of curvature correction by Leschziner and Rodi(66) is based
on a modification of the coefficient cµ, derived from a simplified
form of an algebraic Reynolds-stress model. This has been success-
fully used to calculate recirculating flows, but is difficult to extend
to complex three-dimensional flows. 

Two-equation k – ε models are appropriate, in principle, to
complex flows, do not involve fundamental restrictions in respect of
flow features, including separation, and have been used extensively
in aerodynamic computations (see Section 5). However, the overall
conclusion emerging from extensive application experience has been
that they not return high-quality results for conditions that are
considerable more challenging than those in thin-shear-layer flows.
In particular, the models have been observed to be too diffusive in
stagnating flow, in boundary layers subjected to adverse pressure
gradient and in the presence of stabilising curvature — defects that
result from a combination of the limitations of the eddy-viscosity
concept and the tendency of the ε-equation to seriously overestimate
the turbulent length scale and hence viscosity in decelerating near-
wall flows. In consequence, separation from continuous surfaces
tends to be seriously inhibited or delayed, recirculation regions are
too short, skin friction is excessive and the wall-pressure variation is
misrepresented. The many corrections and fixes proposed, none of
which is general, bear witness to the inescapable conclusion that k – ε
models constitute an insufficiently refined modelling framework for
complex strain. On the other hand, for relatively simple thin shear
flows, one- or even half-equation models can give results as good as,
if not better, than k – ε models at a considerably lower level of math-
ematical and numerical elaboration. Indeed, as shown in the previous
section, Menter’s(25) one-equation model provides a slightly superior
representation even in the presence of separation.

The difficulties experienced with k – ε models, in terms of predictive
weaknesses and also numerical difficulties arising from the
viscosity-affected near-wall properties of the ε-equation, have moti-
vated efforts, especially in the 1990s, to formulate, test and improve
models that use alternative length-scale variables. In computational
aerodynamics, the most popular alternative to ε has been the turbu-
lent vorticity ω ≡ ε/k (Wilcox(66, 67)) and, to a lesser extent, its
inverse, the turbulent time scale τ (Speziale et al(69)) and its root
(Kalitzin et al(70)). These models are reviewed below. Models based
on other length-scale equations include the k1/2 – ξ (ξ = ε/k1/2) model
of Gibson and Daffa’Alla(71), the k – Rt model of Goldberg(72) and the
k – L (or k – σ) model of Benay and Servel(73).

The choice of ω is initially curious, for its asymptotic variation is
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a behaviour which requires the boundary condition to be specified at
some finite distance from the wall. In contrast, its inverse has the



Speziale et al(69) show, by reference to the exact equation for τ,
corresponding to Equation (38), that the exact balance of terms at the
wall involves only viscous contributions that include derivatives of τ
and k, i.e. no correlations explicitly dependent on modelling assump-
tions. This is in contrast to the ε-equation the near-wall balance of
which includes a whole range of higher-order correlations. Further-
more, the near-wall balance is satified by Equation (51) in conjunc-
tion with the quadratic decay of k. This is argued to give τ distinct
advantages over ε in terms of near-wall modelling and behaviour.

An exact transport equation for ω can be derived along analogous
lines to those for τ. At the wall, the balance of terms reduces to:

natural and benign behaviour Comparison of Equation (57) with Equation (53) reveals the
following differences:
● the ω-equation lacks the mixed term in the transformed ε-equation;
● the coefficients of the production and destruction terms are 0⋅55

vs 0⋅44 and 0⋅83 vs 0⋅92, respectively;
● the Prandtl/Schmidt number in Equation (57) is σ = O(1⋅3), while

σω = 2.
In addition, the Prandtl/Schmidt number in Wilcox’s k-equation is 2,
relative to 1 in the k – ε model. Hence, there are several potentially
influential sources for the different performance of the k – ε and k – ω
models. Although the coefficients of Equation (53) satisfy the 
equilibrium constraint, Equation (43), the differences in the values
can, on their own, be very influential. This is illustrated, for example,
by Apsley and Leschziner(74) for the case of a separated diffuser
flow. For that same case, the k – ω model was found to perform
almost as poorly as the k – ε model.

While the k – ω model may have some marginal advantages
over the k – ε model (see discussion in Section 5), a serious and
well-proven defect of the former (Menter(75), Bardina et al(76)) is
its extreme sensitivity to the free-stream value of ω at irrotational
boundaries of shear flows. Menter shows, for example, that the
viscosity within a boundary layer can change by a factor of two or
more by varying the free-stream value within reasonable bounds.
With the k – ε model, the usual practice is to prescribe (unless
known) low free-stream values for k and ε. The shear flow is
virtually insensitive to these values, provided the associated eddy
viscosity is kept realistically low (say, O(10-50ν)). The above
observations have led Menter(29) to formulate a hybrid model
which blends the k – ω model near the wall with the k – ε model in
wall-remote regions. Computationally, this is achieved through a
weighted average formula operating on corresponding k – ε and 
k – ω model coefficients:

with the k-ε coefficients arising from Equation (57) and F being a
prescribed blending function which ensures a dominance of the k – ω
model in the region y+ < 70 and the dominance of the k – ε model
beyond. This hybridisation, on its own, does not yield significant
improvements relative to the k – ε model — nor is it expected to, in
view of the comments made earlier. However, a far more influential
addition to the hybrid model is a correction which limits the shear
stress in accordance with Bradshaw’s relation  (29) which has also
been used to construct the one-equation model (34). Here again, the
basic idea is rooted in the difference between (29), reflecting experi-
mental observation for shear layers, and relation (33) which is
consistent with the k – ε model. Thus a shear-stress limiter is intro-
duced via:

where a = cµ
1/2 and α is a function with extrema of 1 for boundary-

layer flow and 0 for free shear flow (Menter actually uses the
vorticity Ω in place of the velocity gradient; these are identical in
thin shear flow). The switch occurs at: 

which corresponds to the equilibrium condition Pk/ε (see Equation
(33)). Hence, in high strain, beyond the equilibrium state, Equation
(59) yields:
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which, again, does not contain higher-order turbulence correlations
dependent on modelling assumptions. Substitution of Equation (50)
and ∂k/∂y = 2k/y into Equation (52) also shows wall-asymptotic
consistency. Hence, ω also appears to be preferable to ε. 

An early modelled equation for ω proposed by Wilcox(67) is:

with Cω1 = 5/9, Cω2 = 5/6, σω = 2. Wilcox advocates the use of this
equation (irrespective of the Reynolds number) for its freedom from
wall-correction terms. However, the wall-asymptotic balance implied
by Equation (53) is

which, with Cω2 = 5/6, is inconsistent with Equation (52) and leads
to the wrong decay of k at the wall. This then led Wilcox(68) to intro-
duce damping functions pre-multiplying the eddy viscosity, the
destruction term in the k-equation and Cω1 in Equation (53).

In terms of predictive performance, it has often been reported or
claimed that the k – ω model gives distinctly better results for near-
wall flows, especially in boundary layers subjected to adverse pressure
gradient. While the asymptotic near-wall behaviour may play a role
in these differences, another likely source is the representation of the
length scale in the turbulent layer. In an effort to elucidate the origin
of any differences, it is informative to compare the modelled forms
of the ε- and the ω-equations. One of the two equations needs to be
transformed in terms of the length-scale variable of the other. 

Starting from

one can derive an equation for ω by inserting ω = ε/k into the ε equa-
tion, differentiating this and combining the result with the k-equa-
tion. Subject to the simplification σk = σε, the outcome is:



This composite formulation — termed “shear-stress-transport”
(SST) model — has enjoyed significant popularity in aerodynamic
computations because of its favourable response to adverse pressure
gradients. In a decelerating boundary layer, Equation (61) comes
into action and reduces the shear-stress level relative to that of the
non-limited k – ω model, and this is extremely effective in
promoting separation, including shock-induced separation (Batten et
al(77), Leschziner et al(78)). In fact, it has been observed to be exces-
sively effective in some separated flows, both subsonic (Apsley and
Leschziner(73, 78)) and trans/supersonic flows (Liou et al(62)) in which
it gave too early separation and excessively long recirculation regions. 

One difficulty highlighted earlier in relation to the ω-equation is
that ω increases steeply towards infinity at solid boundaries. This is
numerically disadvantageous and also requires the boundary condi-
tion to be specified at some finite distance from the wall. The alter-
native of using τ has been noted, and Equation (51) shows that this
quantity tends to zero at the same rate as k, which offers numerical
advantages. A potentially even better variable is τ1/2 which decays
linearly. Although the use of τ as the length-scale variable goes back
to the 1980s (e.g. Zeierman and Wolfshtein(80)), the first well-
founded k – τ model was proposed by Speziale et al(69) in 1992. The
details of the model are not given here. Suffice it to say that the
modelled τ-equation is closely related to both the ε- and the ω-equa-
tions. In fact, for an identical value of all turbulent Prandtl/Schmidt
numbers, the τ-equation reduces to the ε-equation. Moreover, the 
τ-equation is similar to the ω-equation, but contains a mixed term
proportional to (∂k/∂xj)(∂τ/∂xj) which, if the equation is transformed
in terms of ω, gives rise to a mixed term proportional to
(∂k/∂xj)(∂ω/∂xj), as appearing in Equation (57). Finally, there are
differences in the way viscous damping is handled. 

A model based on τ1/2 (termed ‘g’) was proposed by Kalitzin et
al(70). In its basic form, this is formally identical to the k – ω model,
with the equation for g derived by inversion of the ω-equation, first
in terms of τ and then in terms of g. However, the final working
version of the model contains a limiter designed to suppress the
tendency of the model to generate high levels of τ at free-stream
boundaries. In terms of predictive performance, illustrated by
Kalitzin et al for a three-element high-lift aerofoil and the transonic
RAE 2822 (Case 9) aerofoil, the model generates solutions which do
not differ greatly from its k – ω and k – ε relatives. Apsley and
Leschziner(74) also show that its performance for separated flow is
close to that of the k – ω and k – ε models. 

All models reviewed above use the turbulence energy k as the
velocity scale in the eddy-viscosity relation. This might be a conve-
nient co-ordinate-invariant parameter, but is certainly not ideal, as
has been shown in Section 2 by reference to Equation (2), Equation
(4) and arguments following the latter. The essential argument is that
the shear stress in a shear layer uv— is driven by the normal stress
across the flow, v—2. As turbulence is highly anisotropic, especially at
a wall, k is not a particularly good representative of the turbulence
scale in the eddy-viscosity relation. This disparity is, in part, the
reason for having to attach heavy damping to the eddy-viscosity, via
the damping function fµ, in two-equation models applicable down to
the wall. As the wall is approached, anisotropy increases progres-
sively, because the wall-normal intensity decays far more rapidly
than the turbulence energy (see Equation (9)), with consequent rapid
decline in shear-stress generation. This is a purely kinematic process,
but one that cannot be captured properly via k, which decays far
more slowly than v—2. The damping function is introduced in compen-
sation. However, its argument is the Reynolds number — that is,
damping is assumed to be purely viscous, which is not consonant
with reality. While viscous damping is effective, it is far weaker and
occurs over a thinner region than is implied by the usual damping
functions. These arguments form the basis for the ‘v—2 – f’ model of
Durbin(6), which includes a transport equation for instead of k and an
additional wall-related ‘relaxation’ equation which ‘relaxes‘ v

—2

towards k away from the wall. As the model leans heavily on closure
ideas pertaining to Reynolds-stress-transport modelling, it will be
reviewed later in the context of anisotropy-resolving models. 

3.3 Anisotropy-resolving models

3.3.1 Introductory remarks

It has been demonstrated in Section 2 that the anisotropy of turbu-
lence plays a crucial role in the processes through which the flow
and turbulence fields respond to a whole range of specific strain
types. In particular, the response of turbulence to curvature, normal
straining and wall-blocking has been highlighted. Thus, even if the
normal stresses are not dynamically active (they are in complex
separated and highly 3D flows), the resolution of anisotropy is
important, for its effects on the shear stress. A failure to resolve
anisotropy — as is the case with any linear eddy-viscosity model —
poses the need to introduce a whole range of ad hoc corrections,
which usually only mimic particular processes that are not repre-
sented due to missing model elements. Another process which eddy-
viscosity models fail to resolve is shear-stress transport. Implicitly,
this transport is represented by the linkage shown in Equations (33)
or (29), in conjunction with the transport equation for k. However,
set (2) shows that the shear stress is governed by a radically different
balance than that pertaining to the normal stresses. Hence, the link
implied by the eddy-viscosity model is unrealistic. 

The natural modelling step beyond the eddy-viscosity framework
is second-moment closure — that is, a model which consists of
transport equations for all Reynolds stresses, without recourse to the
artefact termed ‘eddy viscosity’. Simple (exact) forms of these equa-
tions applicable to particular flow conditions have already been
given in sets (2) and (3). A key advantage of second-moment closure
is that the stress-generation terms do not require approximation, for
they only involve products of stresses and strains. It is recalled that
the stress-generation terms are primarily responsible for the
anisotropy and the selective response of turbulence to different strain
types. Another advantage is that convective stress transport is repre-
sented exactly. Other processes require modelling, however, and this
continues to be an active and challenging area of research.

A drawback of second-moment closure is its mathematical
complexity and, arising from this, numerical difficulties (see Section
4) and higher computational costs. In three-dimensional flow, the
model consists of six highly coupled, non-linear partial differential
equations, to which must be added at least one further equation for
the rate of turbulence dissipation. If heat transfer or scalar transport
is included, a consistent modelling framework entails the solution of
(at least) three further equations for flux transport. In addition, the
absence of an eddy-viscosity and associated second-order gradient
terms from both the mean-flow and Reynolds-stress equations tends
to reduce the iterative robustness of most solution algorithms and
adds to the computational costs. Finally, additional boundary condi-
tions are required for the stresses (because they are transported).
These are rarely available from experimental data and need to be
inferred from other quantities. Yet, the above challenges can be and
have been met for over a decade, and it is now possible to compute
very complex 3D flows, both compressible and incompressible, with
the most advanced forms of second-moment closure, incorporating
non-linear models for the pressure-strain redistribution process and
applicable down to the wall without Reynolds-number restrictions.
Examples of the type of compressible flows recently computed with
second-moment closure are given in Fig. 2. 

The complexities associated with second-moment closure have
motivated efforts in recent years to construct simpler model forms
which retain the principal advantages of the former over linear eddy-
viscosity models. These have led to the formulation of a whole range
of non-linear eddy-viscosity and explicit algebraic Reynolds-stress
models, both consisting of sets of explicit algebraic relations for the
stresses in terms of strains. These model are not as fundamentally
firm as second-moment closure, but easier to implement and cheaper
to apply.

In what follows, both modelling frameworks are reviewed, with
particular relevance to aerodynamic computations.
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3.3.2 Reynolds-stress models (RSTM)

The foundation of all RSTMs is the exact set:

in which Cij, Pij, Fij, Φij, εij and dij represent, respectively, stress
convection, production by strain, production by body forces (e.g.
buoyancy fi = giβT′ ), dissipation, pressure-strain redistribution and
diffusion. The last three processes require modelling, and there is a
large body of literature in this respect, of which only a small propor-
tion is covered herein.

At high Reynolds numbers, dissipation is usually assumed to be
isotropic, because it occurs at eddy length scales which tend to be
very much smaller than the scales of the large energetic eddies
which are sensitive to the mean strain (and hence to its orientation),
the ratio of the scales being of order Re3/4. Isotropy in the dissipative
scales implies:

in which ε is the dissipation rate of turbulence energy. This approxi-
mation is inadequate close to the wall where length scales are gener-
ally small and anisotropy is large. Proposals have thus been made (e.g.
in Gilbert and Kleiser(81), Launder and Tselepidakis(82), Hallbaeck et
al(83) and Hanjalic and Jakirlic(84)) to sensitise εij, in an algebraic
fashion, to invariants of the stress anisotropy aij = (uiuj

—–/k – 2/3δij):

of the dissipation anisotropy eij = (εij/ε – 2/3δij):

From a physical point of view, A2, A3 and A may be related, if
only tentatively, to structural features of turbulence. Thus, A = 1
identifies isotropic turbulence (‘spherical’ eddies), while A = 0 char-
acterises two-component turbulence (‘flat’ eddies — say, near a wall
or sharp fluid–fluid interface). Moreover, negative values for A3
characterise ‘saucer’-shaped eddies, while positive values indicate
‘sausage’-shaped structures. 

A model widely used to represents the anisotropic dissipation is:
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Figure 2. Compressible flows featuring strong shock–boundary-layer
interaction, computed with a low-Re Reynolds-stress-transport model

incorporating a cubic pressure-strain model; (a) jet-afterbody flow
(from Leschziner et al(78)); (b) AGARD B2 generic fighter configuration
(from Leschziner et al(78)); (c) Mach-2 flow around fin-plate assembly

(taken from Batten et al(77)).

( )D
2

D
ij

ij ijij

ij ij

i j j ji i
i k j k i j j i

k k k k
FC P

j j i ji i
i j k ik jk

j i k k

d

u u U uU uu u u u f u f u v
t x x x x

u pu u uu pup u u u v
x x x x

ε

Φ

∂ ∂⎧ ⎫∂ ∂
= − + + + −⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

⎧ ⎫⎛ ⎞∂ ∂∂ ∂ ⎪ ⎪+ + − + δ + δ −⎨ ⎬⎜ ⎟ρ ∂ ∂ ∂ ρ ρ ∂⎝ ⎠ ⎪ ⎪⎩ ⎭
. . . (62)

ε εδij ij= 2
3

. . . (63)

A a a A a a a A A Aij ij ij jk ki2 3 2 31 9
8= = = − −( );   ;   . . . (64)

E e e E e e e E E Eij ij ij jk ki2 3 2 31 9
8= = = − −( );   ;   . . . (65)

ε δ ε εε εij ij ijf f= + −( ) ∗2
3

1 . . . (66)

where εij
* are the wall-limiting values of εij, which can be readily

obtained by applying the Taylor-series expansions in Equation (8) to
the dissipation tensor in Equation (62) (see Launder and Reynolds(85)).
The ‘blending’ function fε varies from model to model — there are at
least five forms (see Hanjalic(86)) — and its subjects are A and/or E
and/or Rt. Apart from securing the correct wall-limiting behaviour of
εij and introducing shear-stress dissipation, Equation (66) also ensures
that dissipation of the wall-normal intensity is ‘shut off’ as turbu-
lence approaches the two-component near-wall limit. This is an
important element of any model designed to satisfy realisability, a
property which includes the unconditional satisfaction of u

—2
α ≥ 0

(a)

(b)

(c)



(with α denoting the principal directions). More recent efforts (e.g.
Oberlack(87)) have focused on the derivation of transport equations for
the dissipation components, based on two-point correlation arguments,
but such equations have not been used in aerodynamic practice. 

The determination of the dissipation rate ε, required by Equation
(66), has been the subject of an extensive discussion in Section 3.2
in relation to eddy-viscosity models. Much of what was said therein
applies here too: the length-scale equation remains a major source of
model weaknesses. With few exceptions, ε is determined from vari-
ants of the transport Equation (39), with or without corrections. The
only major difference is the replacement:

which implies that the diffusive flux of dissipation in any one direc-
tion is not simply associated with the gradient of the dissipation in
that direction (a form of the Fourier-Fick law), but is a weighted sum
of the gradients of the dissipation in all directions, each weighted by
the appropriate Reynolds stress. This is referred to a ‘generalised
gradient diffusion hypothesis’ (GGDH), and its rationale will be
indicated below by reference to modelling stress diffusion. 

A problem with the dissipation-rate equation, already addressed in
Section 3.2, is that it returns excessive levels of turbulent length
scale in boundary layers subjected to adverse pressure gradient. This
defect is common to both two-equation eddy-viscosity and
Reynolds-stress models, and requires a correction analogous to
Equations (44) and (45). Here again, the usual practice is to add a
‘Yap-type’ correction (Yap(56)) which forces the ε-equation to return
a length scale close to the local-equilibrium value. An example is the
recent variant of Jakirlic and Hanjalic(57), 

Fu et al(90) have shown, by reference to swirling flow, that the
above form of Φij2 is not frame-invariant, but that invariance is
assured if the body-force-related production terms Φij and the
convection tensor are included to give the form:

Although this combined ‘linear’ model satisfies the basic require-
ment of steering turbulence towards isotropy, the isotropisation
process is far too intense at the high levels of anisotropy prevailing
near the wall or free liquid surface. As the wall is approached, turbu-
lence tends towards a two-component state (A = 0), and redistribu-
tion must vanish to allow this state to be achieved. By intensifying
the isotropisation process as the wall is approached, the linear model
does not merely fail to represent the physical process correctly, but
can lead to one of the principal normal stresses becoming negative
— a condition violating realisability.

Correcting the above weakness, within the linear framework,
relies on the introduction of elaborate and influential ad hoc terms
(Shir(91), Gibson and Launder(89), Craft and Launder(92)) which coun-
teract the isotropisation process in proportion to the distance from
the wall, normalised by the turbulent length scale k3/2/ε. For
example, for a shear layer along a single horizontal wall, the correc-
tion terms damping the linear isotropisation of the wall normal stress
v
—2 are:

In addition, the redistribution process needs to be sensitised to inho-
mogeneity, associated with large strain gradients, and to anisotropy
invariants, especially in low-Re forms which allow the model to be
used down to the wall (Launder and Shima(93), So et al(94), Ince et
al(95), Jakirlic and Hanjalic(57), Craft and Launder(96)). An example of
the latter practice is that of Jakirlic and Hanjalic who made extensive
use of DNS data to calibrate their linear low-Re model and use:

where f is a function of the turbulent Reynolds number Rt. Similarly,
Cw

1 and Cw
2 in Equation (71) are sensitised to A, A2 and Rt.

An alternative, proposed by Durbin(97), introduces an elliptic
relaxation equation of the form:
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which is very similar to Equation (45) and involves the anisotropy
invariant A, determined from Equation (64).

Alongside dissipation, the redistribution or ‘pressure-strain’ term Φij
presents the modeller with the biggest challenge in the context of
second-moment closure. This term vanishes upon the contraction 
k = 0·5uiuj

—–δij (strictly, in incompressible flow only) and thus becomes
irrelevant in closures based on the turbulence energy or a surrogate
scalar. In second-moment closure, however, this term controls the
redistribution of turbulence energy among the normal stresses — a
process driving turbulence towards a state of isotropy — as well as
the reduction in the shear stresses in harmony with the isotropisation
process (recall Mohr’s circle in solid mechanics). It only requires
reference to Equation (2) to appreciate that the pressure-strain
process is of crucial importance in the context of second-moment
closure. In simple shear flow, the shear stress is driven by v

—2, a (kine-
matic) stress that is not generated and is only finite because of the
redistribution process effected by Φ22. Moreover, Φ12 is the only
term which balances the generation of shear stress and hence avoids
that stress rising indefinitely. 

It can be shown analytically that the redistribution process consists
of two major constituents, one involving an interaction between turbu-
lent quantities only (Φij1 and referred to as the slow or the Rotta term )
and the other involving an interaction between mean strain and turbu-
lence fluctuations (Φij2 and termed rapid). This fact has led most
modellers to make separate proposals for these two fragments. The
simplest proposal forms, used for most complex-flow computations,
are the linear relations by Rotta(88) and Gibson and Launder(89):
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where Φij
c is the wall-corrected form of the standard (uncorrected)

Φij, L is the turbulence length scale and ∇2 is the elliptic operator.
Equation (73) steers Φij towards the correct wall values, prescribed
as boundary conditions. Although this approach has been shown to
perform well for several challenging flows (Durbin(97)), it requires
the solution of the six additional differential equations (73), which
obviously adds to the resource requirements. A simplified variant of
Equation (73), intended for near-wall shear flows, is adopted as part
of Durbin’s(6) so-called v2 – f model and has already been mentioned
at the end of Section 3.2. The model involves a single Reynolds-
stress equation for v—2, essentially the stress normal to the wall or the
streamlines. This stress is also the velocity scale used in the eddy
viscosity with which the mean flow is computed. The Reynolds-
stress equation is solved in conjunction with the i, j = 2, 2 compo-
nent of Equation (73) (f denotes the ratio Φ22/k) and the k-equation.

From a fundamental point of view, as well as on practical
grounds, the use of wall corrections is unsatisfactory, not only
because of their non-general nature, but also because they rely



heavily on the wall distance (y in Equation (71)). The latter is espe-
cially disadvantageous in complex geometries, where the influence
of more than one wall needs to be taken into account, and when
general non-orthogonal numerical grids are used. Hence, much of
the recent fundamental research in the area of turbulence modelling
has been concerned with the construction of non-linear pressure-
strain models which satisfy the realisability constrains and do not
require wall corrections. Non-linear models or variants have been
proposed by Shih and Lumley(98), Fu et al(99), Speziale et al(100),
Launder and Tselepidakis(82), Craft et al(101), Craft(102), Craft and
Launder(96), Pfunderer et al(103), and Batten et al(77), the last four
being extensions of Fu et al’s model and the very last being a
compressibility-generalised variant suitable for shock-affected flows.
The models differ in detail and in respect of the order of terms
included, but all have arisen from the common approach of
proposing non-linear expansions, in terms of components of the
Reynolds-stress tensor uiuj

—– (or rather the anisotropy tensor aij), to
second- and fourth-rank tensors which arise in the most general rela-
tionship for the pressure-strain term prior to its approximation: 

in which the two groups of terms correspond, respectively, to Φij1
and Φij2. The coefficients of the various terms in the expansions for
Aij and Mijkl are then determined by imposing necessary kinematic
constraints (continuity, symmetry, etc.). Realisability is introduced
into some model forms by sensitising the pressure strain model to
invariants of the stress anisotropy. The most elaborate model is that
of Craft and Launder and is quadratic in Φij1 and cubic in Φij2, the
latter containing six distinct groups of terms and associated coeffi-
cients. This model has recently been modified by Batten et al(77) to
apply to shock-affected flows, in view of experience which had
revealed that the parent form responds incorrectly to shocks.

In common with linear models, the above cubic forms also rely on
wall corrections (or inhomogeneity terms), albeit much weaker. To
at least avoid reliance on the wall distance, efforts have thus been 

made to replace the wall-distance parameter              in Equation (71) 

by local turbulence-structure parameters which indicate the wall
proximity by implication. Examples for such parameters are those
proposed by Craft and Launder(96) and Jakirlic(104),

where l = k3/2/ε.
Stress diffusion (which is rarely a dominant process) is usually

approximated by the ‘generalised gradient diffusion hypothesis’ (GGDH)
of Daly and Harlow(105), already encountered in Equation (67):

generation multiplied by a turbulent time scale (k/ε). This notional
relationship is reflected by Equation (76) (and also Equation (67)). 

Little has been said so far about accommodating the effects of
viscosity in the context of low-Re modelling. Most recent models,
among them those of Shima(110), Launder and Tselepidakis(82),
Launder and Shima(93), So et al(94), Jakirlic and Hanjalic(57) and Craft
and Launder(96), are low-Re variants, allowing an integration through
the viscous sublayer. This is an area in which much reliance is
placed on recent DNS data for near-wall flows. In essence, different
model elements, especially the dissipation equation (via Cε1, Cε2
and additive corrections to the equation), are sensitised to viscosity
by way of damping functions with subjects being forms of the turbu-
lent Reynolds number. As the near-wall structure is substantially
affected by both inertial and viscous damping, the former provoking
strong anisotropy via pressure reflections, low-Re extensions involve
a functionalisation on anisotropy invariants, Equation (64), as well
as viscosity, each expressing a different physical process. In fact, the
dissipation invariants, Equation (65), can also be used, as has been
done by Jakirlic and Hanjalic(57). Because the functionalisation
process is non-rigorous, essentially aiming to make the model return
a phenomenological behaviour consistent with experimental or DNS
data, there is a considerable amount of ambiguity in extending
models to low-Re conditions, and thus each model features its own
individual sets of functions derived along different routes. Such
extensions are not, therefore, considered in detail here. 

Although low-Re second-moment-closure models are beginning
to be applied to quite complex 2D and even 3D flows, the desire for
relative simplicity and the uncertainties associated with near-wall
modelling have encouraged the application of somewhat ‘simpler’
hybrid models which combine high-Re second-moment closure with
low-Re EVMs, the latter applied to the viscous near-wall layer (Lien
and Leschziner(111, 112)), or even with wall functions (Lien(113),
Leschziner and Ince(114), Hanjalic et al(115)). Justification, especially
for the former option, is provided by the observation that stress
transport is usually uninfluential very close to the wall and that the
principal function of the near-wall model is to provide the correct
level of the shear stress and wall-normal heat flux. 

3.3.3 Non-linear eddy-viscosity and explicit algebraic
stress models (NLEVM, EARSM)

NLEVMs are based on the general tensorial expansion:

where Tij is a function of the strain and vorticity tensors:
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More complex forms of Equation (76) exist, but are not demon-
strably superior (see, for example, Demuren and Sarkar(106) and
Younis et al(107) for reviews) and have rarely been used. The ratio-
nale of the GGDH may be understood by reference to the exact
transport equations for the triple correlations —uiujuk

— (see Hanjalic and
Launder(108)). In the exact Equation (62), the dominant fragment (at
high Reynolds numbers) is ∂(—uiujuk

—)/∂xk, with pressure diffusion
being sub-ordinate (estimated by Lumley(109) at around 20%). It
turns out that the triple-moment equations contain production terms
that are formed as products of stresses and stress gradients. A simple
algebraic model for the triple moments is one that is based on the
assumption that these moments are proportional to the their rate of
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in which Ωk represents any system rotation and αλ depend on the
turbulent time scale (e.g. k/ε) and, in general, also on invariants of
strain and vorticity. Linear models follow, evidently, upon setting
λ = 1, Tij = Sij, α1 = –2µt/k = –2cµk/ε. Following particular choices
of Equation (77), subject to tensorial constraints, the coefficients of
the non-linear terms are determined by reference to experimental
and DNS data for key baseline flows.

EARSM turn out to have the same form as Equation (77), but
arise from an inversion of simplified forms of the Reynolds-stress-
transport models discussed in the previous section. The key simplifi-
cation is Rodi’s(116) ‘algebraic’ approximation of the convective and
diffusive stress transport:
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which leads to an implicit set of algebraic equations for the stresses,
with the k- and ε-equation providing Pk and ε. The algebraic approx-
imation for convection in Equation (79) is equivalent to:

that is, the rate of change of the anisotropy vanishes and the turbu-
lence structure is thus assumed to be in equilibrium. 

Pope(117) was the first to show that the algebraic set arising from
the insertion of Equation (79) into the model of Launder et al(118)

could be arranged in the explicit form in Equation (77) (although Pk,
which includes the stresses, was retained in its implicit form). The
route by which EARSMs are derived will be further discussed
below. What should be clear already is the fact that both NLEVMs
and EARSMs are inevitably less general and less fundamentally
secure than full Reynolds-stress models. A particular problem arises
from the fact that stress convection can be a substantial contributor
to the stress balance in curved and swirling flows, and that, in such
circumstances, turbulence-energy convection is not a good represen-
tation of the convection of stresses (see Fu et al(119)). Generally, the
adequacy of Equation (79) is strongly dependent of the co-ordinate
system adopted and the orientation of the flow relative to that 
co-ordinate system. Stress convection is only low in the streamwise
direction, but the co-ordinates are very rarely well aligned with the
flow in practically relevant cases. Some recent proposals designed to
address this problem may be found in Girimaji(120), Rumsey et al(121)

and Wallin and Johansson(122).
The derivation of expansions of the form (77) is constrained by

the Cayley-Hamilton theorem, which dictates that there are at most
ten tensorially independent, symmetric, traceless, second-rank tensor
products of Sij and Ωij (Pope(117)). No model contains all groups.
Cubic models use the first six groups:

where bold type is used for a second-rank tensor, {} indicates its
trace, and I ≡ (δij). Products are, for example, ws = ΩikSkj and 
w2s = ΩikΩklSlj. The first term on the right-hand side corresponds to a
linear eddy-viscosity model (stress ∝ strain). For simple shear, 
σ = (k/ε)(∂U/∂y), Equation (81) simplifies to:

and this shows that the quadratic terms allow normal-stress
anisotropy to be captured. These terms make no contribution to the
production of k in two-dimensional incompressible flow. The
requirement that pure rotation should not generate anisotropy
requires that β3 is either identically zero or vanishes as s → 0. The
terms with coefficients γ1 and γ2 are tensorially linear (proportional
to s) and are responsible for an important sensitivity to curvature,
since in a curved shear layer,

where R is the local radius of curvature. The γ3-related term imparts
a sensitivity to swirl. Both this and the γ4-related term vanish in two-
dimensional incompressible flow.

EARSMs are derived, in principle, by inserting Equation (81) (or
a variant thereof) into the implicit set of algebraic Reynolds-stress
equations, which can be written in the form†:

where the right-hand side contains groups which are linear in a,
provided the pressure-strain process has been approximated by a
linear model (e.g. Equation (69)). This insertion then leads to a set of
equations which can be solved for the set of coefficients in Equation
(81) (see, for example, Jongen and Gatski(123), Wallin and
Johansson(124)). Closure is then provided by equations for the turbu-
lence scales, k and ε or ω. Apart from being constrained to linear
pressure-strain models, EARSMs rely on the linearity of the dissipa-
tion on the stresses. This is irrelevant if the dissipation is assumed
isotropic. However, more refined near-wall approximations such as
Equation (66), with fε being a function of the stresses, present
EARSMs with problems. These are addressed by Xu and
Speziale(125) and Johansson et al(126). 

There are now some dozen NLEVMs and EARSMs. A first gener-
ation of quadratic models emerged through contributions by
Saffman(127), Wilcox and Rubesin(128) and Speziale(129). In Speziale’s
model, for example, the coefficients were simply taken to be powers
of the time scale k/ε, so as to achieve dimensional consistency. Since
then, a number of models of various complexity and derived along
quite different routes have emerged (Yoshizawa(130), Shih et al(131),
Rubinstein and Barton(132), Gatski and Speziale(133), Craft et al(134),
Lien and Durbin(135), Lien et al(136), Taulbee et al(137), Wallin and
Johansson(124,138), Rung et al(139) and Apsley and Leschziner(140)).
Most NLEVMs are quadratic, while those of Craft et al, Lien et al
and Apsley and Leschziner are cubic. These differences in order are
of considerable significance, especially in three-dimensional flows.
In particular, the cubic fragments play an important role in capturing
the strong effects of curvature on the Reynolds stresses‡. The models
by Shih et al, Lien et al and Craft et al are NLEVMs and start from
the generic expansion (81), while those of Gatski and Speziale,
Apsley and Leschziner, Taulbee et al, Wallin and Johansson and
Rung et al start from an algebraic Reynolds-stress model and are
EARSMs. Other routes involve the ‘Direct Interaction’ approximation
adopted by Yoshizawa and the ‘Renormalisation Group’ (RNG)
approach taken by Rubinstein and Barton. Most models depend on
two turbulence scales (usually k and ε), as well as strain and vorticity
invariants. In contrast, one variant of Craft et al’s cubic model
makes use of a transport equation for the stress invariant A2 = aijaij,
while Lien and Durbin’s quadratic model depends on the Reynolds
stress normal to the streamlines, which is also obtained from a
related transport equation.

The predictive quality with which any particular NLEVM resolves
anisotropy depends significantly on the calibration of the model’s
coefficients. This is demonstrated in Table 1 and Fig. 1, taken from
Loyau et al(141). Table 1 compares, against experimental data by
Tavoularis and Corrsin(142), levels of normal-stress anisotropy in
homogeneous shear predicted by the non-linear models of Wilcox
and Rubesin(128), Shih et al(131), Craft et al(134) and Apsley and
Leschziner(140). Figure 1 compares model solutions with DNS data
for the normal stresses in a fully-developed channel flow.

As demonstrated through Equations (82) and (83), NLEVMs are
able to represent turbulence anisotropy and sensitivity to curvature.
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†While implicit algebraic stress models can be and have been used directly, in
which case they need to be inverted iteratively during the solution process,
they tend to display numerical stiffness and have also been observed to
generate more than one solution for one and the same flow, reflecting some
ill-posedness.
‡In 2D flow, the genuinely cubic fragments make no contribution. However,
the quasi-cubic (strictly linear) terms in Equation (81), associated with γ1 and
γ2, are active. Indeed, these are responsible for imparting sensitivity to curva-
ture, as reflected by Equation (83).
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However, one problem they do not alleviate, without intervention, is
the excessive generation of turbulence at high strain rates, explained
by reference to Equations (29) to (33). This problem is rooted in the
form of the linear term in Equation (81) if the coefficient α is taken
to be α = –2cµk/ε, as would be consistent with the linear eddy-
viscosity framework. This is not, of course, an issue relevant to
EARSM, because they determine the coefficients from the
Reynolds-stress model which represents far better the sensitivity of
the stresses and turbulence energy to the strain. A constant value of
cµ (= 0⋅09) gives the wrong response to high strain rates (see (29) vs
(33) and also the last equation in set (6) relative to set (3)). The
correct response implies the need for cµ ∝ [(k/ε)(∂U/∂y)]–1 or 
cµ ∝ [(k/ε)S]–1. Substitution of the former into Equation (33) shows
uv— ∝ k (or a12 = const), which is consistent with Bradshaw’s expres-
sion in Equation (29) and Menter’s modelling proposal in Equation
(59) for high strain rates. Loyau et al(141) show variations of cµ with
the non-dimensional strain in simple shear, (k/ε)(∂U/∂y), built into
three non-linear models. All three models incorporate a similar func-
tional dependence, especially at strain rates exceeding the equilib-
rium value. In most model variants, cµ is sensitised to both strain and
vorticity invariants so as to also avoid the excessive generation of
turbulence energy in stagnation flow. Such sensitisation may, of
course, also be applied to linear EVMs, and this has indeed been
done by Liou et al(62). Here again, EARSMs handle this type of
sensitivity without special intervention.

3.4 Compressibility effects

Compressibility manifests itself, first, through mean-density effects
in all transport equations and, second, through turbulence correla-
tions, associated with density fluctuations, which only arise in the
presence of compressibility and require additional modelling
assumptions. The approach taken has thus almost invariably been
one of extending models formulated and calibrated for incompress-
ible flow to compressible conditions. 

Mean-density variations are accounted for explicitly, as matter of
course, in the computation of the convective as well as diffusive
fluxes, the latter through dilatation terms in the constitutive stress-
strain relation in Equation (1). What is normally not accounted for,
however, are implicit effects of density variations on the numerical
values of the turbulence-model coefficients. Thus, Huang et al(143)

show that satisfaction of the van Driest compressible log-law of the
wall depends on the use of the ratio of local-to-wall densities in
deriving the universal velocity. This has implications to the manner
in which numerical constants in the turbulence-transport equations
are derived by reference to experiments for incompressible flows.
For example, the turbulence-equilibrium relation in Equation (43),
which is used to fix Cε1, depends, in compressible conditions, on the
density gradients, and failure to account for this link leads to errors
in the representation of the boundary-layer structure. One difficulty
here is that every model variant, even within the same model cate-
gory, exhibits a different level of sensitivity to the density gradient.
Marvin and Huang(144) show, for example, that the k – ω model is

much less sensitive than the k – ε model to the density gradient, at
least in terms of the log-law of the wall. Another problem is that the
interaction of mean-density gradients with turbulence-model
constants cannot really be divorced from other interactions associated
with density fluctuations, for which explicit compressibility correc-
tions are usually introduced. Hence, the effects of mean-density
gradients need to be investigated in models which are complete, i.e.
with all compressibility corrections included. Fortunately, implicit
mean-density effects appear to be relatively unimportant when the
Mach number is below 2-3. 

The effects of compressibility on turbulence transport, via density
fluctuations, emerges upon a consideration of the equations
governing the Reynolds stresses. This is normally done using
density-weighted averaging:

where Φ is any flow variable. The associated decomposition:

then implies:

where ψ″ is the density weighted fluctuation of a fluid property Ψ
different from Φ.

The inclusion of compressibility leads, principally, to the appearance
of dilatational pressure-strain and dilatational dissipation fragments
in the Reynolds-stress equations:

where sij identifies strain fluctuations, as well as source-like pres-
sure-work terms which contain —uk″ (interpretable as a turbulent mass
flux),

Moreover, there are covert influences which appear upon the
expansion of density-weighted correlations in terms of conventional
Reynolds averages. For example, the mean-momentum and energy
equations contain:

where
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a11, ∞∞ a12, ∞∞ a22, ∞∞ a33, ∞∞ (Sk/εε)∞∞

Expt 0⋅403 –0⋅284 –0⋅295 –0⋅108 6⋅08

Linear k – εε 0 –0⋅434 0 0 4⋅82
EVM

WR 0⋅3 –0⋅434 –0⋅3 0 4⋅82

SZL 0⋅313 –0⋅318 –0⋅19 –0⋅112 6⋅56

CLS 0⋅53 –0⋅273 –0⋅307 –0⋅223 7⋅66

AL 0⋅449 –0⋅276 –0⋅353 –0⋅095 6⋅81

Table 1
Equilibrium values of non-dimensional anisotropy and shear

stress predicted by several models for homogeneous turbulent
shear flow
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as well as triple correlations associated with density fluctuations.
Morkovin’s(145) hypothesis suggests, and an analysis of DNS data

by Huang et al(146) for compressible boundary layers confirms, that
the correlations in Equation (91) can be safely ignored for M < O(5),
which simplifies Equation (90) and removes Equation (89) alto-
gether. Huang et al(146) also show that —ρ′uiuj

— and —ρ′uiT′— in Equation



(90) are of order 5% of     and, respectively, over most
parts of boundary layers at M = 3, with somewhat higher maxima in
the viscous sublayer, so that these terms can also be neglected,
unless M >> 3. This leaves open the question of the importance of
the dilatational pressure and dissipation terms, which are — it is
important to point out — pertinent not only to second-moment
closure, but also eddy-viscosity models.

There have been several proposals, over the past decade, for
modelling the dilatational dissipation terms (Zeman(147), Sarkar et
al(148), Wilcox(149), Fauchet et al(150)) and the pressure-strain fragments
(Aupoix et al(151), Sarkar(152), Zeman(153), El-Baz and Launder(154)).
Some further, mostly ad hoc corrections are given in Coakley et
al(155). While the models differ substantially in detail, most feature
the turbulent Mach number (usually squared) as a key indicator of
the importance of compressibility. All models, were derived by
reference to flows unaffected by walls (homogeneous or free-shear
flows), in which the principal manifestation of compressibility is a
reduction in turbulent fluctuations with increasing Mach number and
hence a decrease in spreading rate of shear flows. Their applicability
to near-wall flows was unclear until the analysis of DNS data by
Huang et al(146) for supersonic boundary layers at M = 1⋅5 and 3
demonstrated that the dilatational terms are insignificant in near-wall
flows, in marked contrast to free flows. Huang et al(146) also showed
that all major models for the dilatational terms grossly over-estimate
their actual influence, and that the assumption of the dilatational
dissipation being correlated with the turbulent Mach number is
incorrect. Indeed, the effect of most compressibility corrections on
turbulent boundary layers is in the wrong direction (Huang(156)). It is
not surprising, therefore, that the use of these models to predict
compressible boundary layers gives disappointing results. Thus, the
outcome of extensive validation studies in the 1990s at NASA for
shock-affected boundary layers is encapsulated by the statement by
Marvin and Huang(144) that “indeed experience has shown that for
the prediction of subsonic and supersonic flows, these two modifica-
tions degrade the results and are not recommended.”

While the profound difference in the level of contribution of the
dilatational terms in free and wall-bounded flows is not fully under-
stood, Friedrich and Bertolotti(157) conjecture, on the basis of a linear
analysis of Coleman et al’s(158) DNS data, that the primary source is
the impermeability constraint of the wall and its damping influence
on wall-normal velocity fluctuations. A parameter which appears to
be particularly influential is the gradient Mach number Sl/c, where S
is the strain, l is the integral length scale of turbulence and c is the
speed of sound, which is one order of magnitude higher in free-shear
layers than in boundary layers. DNS studies by Sarkar(159) confirm
this and also indicate that the compressibility-related reduction of
turbulence is not associated with explicit dilatational effects, but is
due to a reduced level of energy production. This suggests that the
models proposed for Equation (88), while phenomenologically
effective, are fundamentally wrong, even for free shear layers.

The principal conclusion offered on the basis of the above consid-
erations is that there is no tenable argument for including any
explicit compressibility models in computations of near-wall flows
up to M = O(5). What to do beyond this value is unclear, at present.
For free shear layers, current dilatation-related corrections are effec-
tive, but must be used with considerable caution in view of their
probably serious fundamental flaws.

4.0 NUMERICAL IMPLEMENTATION

4.1 Introductory remarks

Turbulence models consist, in general, of systems of coupled, non-
linear algebraic and differential equations. These systems are numer-
ically stiff, and their effective implementation into viscous-flow
solvers is a non-trivial task. Indeed, in the case of the most complex
class of second-moment-closure models, which lack the numerically

advantageous viscosity-related second-order derivative terms, the
manner in which the model equations are treated can dictate the
numerical properties of the solution algorithm as a whole to the
extent of causing or preventing catastrophic instability. 

In the case of compressible flows, a wide variety of explicit and
implicit time-marching algorithms have been developed to solve the
hyperbolic conservation laws. Most schemes used for computing
incompressible flows are based on the pressure-Poisson method,
originally proposed by Harlow and Welch(160) and recast by Patankar
and Spalding(161), the latter being the most widely known of many
variations. Other popular approaches for incompressible flows
include the projection method (Chorin(162)) and the artificial-
compressibility method (Chorin(163)). Both projection and artificial
compressibility methods advance a velocity field by some conve-
nient means whilst disregarding the solenoidal nature of V and then
recover the solenoidal velocity field by a second step. The projection
method accomplishes this through the ‘Hodge and Helmholtz decom-
position’ (Chorin and Marsden(164)) in which the velocity field is
decomposed into divergence-free and curl-free parts. In the case of the
artificial-compressibility method, the incompressible-flow equations
are cast in a pseudo-compressible form by adding a pseudo-pressure-
time derivative to the continuity equation. The classical formulation of
Chorin(163), suitable for steady-state problems, can also be extended to
transient flows (Merkle et al(166), Rogers(165), Drikakis(167)) via an
approach often referred to as ‘dual-time stepping’.

The purpose of this section is to discuss specific issues of turbu-
lence-model implementation within the types of numerical frame-
work outlined above. 

An appropriate starting point is the two-dimensional Navier-
Stokes equations, supplemented by the relevant turbulence-transport
equations, written here in a conservative, matrix form in terms of the
general spatial coordinates (ξ, ζ),
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where E and G contain the advective terms, R and S contain the
viscous terms and H contains source-like terms in the turbulence-
model equations which do not fit into the flux terms. 

It is widely accepted that numerical accuracy is dictated, princi-
pally, by the approximation of the advective terms. The most well-
founded class of methods for discretising these terms are Riemann
solvers (also known as high-resolution methods). Such methods aim
to maximise accuracy by solving the Riemann problem at the cell
faces of a computational volume. Implementations of Riemann
solvers have been proposed in conjunction with both upwind and
centred approximations of variables on the characteristics defining
the directions of propagation of acoustic and scalar-property
changes. The design of these schemes is based on the mathematical
theory of hyperbolic conservation laws. 

The addition of turbulence-transport equations leads to a number
of specific solution difficulties, the most important of which are
rooted in the weak coupling of these equations to the aerodynamic
set. In the case of eddy-viscosity models, the link between the fluid-
flow and turbulence-transport equations is established through the
eddy viscosity, which is not, however, a solution (transported) variable.
In the case of second-moment closure, the link is effected directly
through the Reynolds stresses which are solution variables in U and
occur explicitly in the momentum-flux components of R and S. 

In the case of eddy-viscosity models, implemented in hyperbolic-
system solvers, inter-equation coupling can be strengthened through:
(i) the development of non-linear high-resolution methods that
encompass the characteristics of the turbulence equations and (ii) an
implicit-coupled solution of the equations, including an implicit
treatment of the source terms. Apart from relatively minor rearrange-

i ju uρ ′′ ′′ iu Tρ ′′



ments in the source terms of the turbulence equations (e.g. their
linearisation), no special measures are generally adopted in pressure-
based schemes which solve the equations as a segregated, sequential
set. Second-moment closure is considerably more challenging,
however, and its stable implementation relies, in both numerical
environments, on a whole range of stability-promoting measures,
designed to strengthen the coupling between the equations. These
issues are discussed in the following sections.

4.2 Schemes originating from hyperbolic 
conservation laws

4.2.1 Numerical reconstruction of advective terms

A seemingly minor, though influential implementation aspect to high-
light first is that the turbulence energy featuring in most turbulence-
transport models should be included in the total-energy budget. This
can be particularly important for the accuracy of supersonic- and
hypersonic-flow simulations. It certainly affects the efficiency of the
computations, especially when implicit schemes are employed, in
which case the turbulence energy contributes implicitly to the
elements of the inverse matrix of the system in Equation (93).

Since the turbulence energy is a solution variable in both eddy-
viscosity and second-moment closure models (in the latter
through) k = 0⋅5(u—2 + v—2 + w—2) one can include the equation for the
turbulence energy in the solution of the Riemann problem. The solu-
tion variables can then be re-constructed at the cell faces as functions
of their corresponding characteristic values, i.e. those which are
dependent on the three wave speeds. The latter are defined by the
eigenvalues of the Jacobi matrices of the advective fluxes. Barakos
and Drikakis(168) have developed a Riemann solver along these lines
for the compressible Navier-Stokes equations in conjunction with
two- and three-equation eddy-viscosity models. In their method, the
solution to the Riemann problem relates the cell-face turbulence
energy to the values of the turbulence energy on the three character-
istics, as well as to the corresponding characteristic values of the
conservative flow variables. The values on the characteristics are
subsequently calculated by second- or third-order MUSCL-type
interpolation schemes. The above advective method provides a direct
coupling between turbulence-transport and fluid-flow equations,
regardless of whether explicit or implicit time-discretisation is
employed. 

While the turbulence energy can be reconstructed as a function of
its three characteristics values, the same does not apply to the subject
of the second turbulence-transport equation, i.e. the equation for the
turbulence dissipation or any other variable employed as a surrogate
of the turbulence length scale. This is due to the fact that the length-
scale variable does not appear explicitly in the fluxes of other equa-
tions and cannot be coupled to them. For incompressible flow,
neither the turbulence energy nor the length-scale variable appears
explicitly in the flux terms of the fluid-flow equations, and both can
therefore be re-constructed only as a function of their first character-
istic value (Drikakis and Goldberg(169)).

Although the eigenstructure of the equations allows for inter-equa-
tion coupling via the flux terms, it does not account for the coupling
established through the source terms of the turbulence-transport
equations. These terms, which are often dominant and hence numeri-
cally influential, must therefore be treated by other numerical means
which are discussed below.

4.2.2 Implicit implementation

Many schemes devised originally for non-turbulent flow have been
used to solve turbulent-flow problems through the addition of eddy-
viscosity models implemented in a decoupled fashion, in which the
Navier-Stokes set is solved first and the turbulence equations are
then integrated sequentially to update the eddy viscosity (Kunz and
Lakshminarayana(170), Liou and Shih(171), Sahu and Danberg(172)).

This approach is straightforward and hence popular. However, it
results in slow numerical convergence, as will be demonstrated later.
It is especially disadvantageous in unsteady flows, because it tends
to require, for stability reasons, different time steps for the mean-
flow and turbulence-transport equations.

The implicit-coupled solution of the Navier-Stokes and turbu-
lence-transport equations has been pursued in a number of schemes
(Gerolymos and Vallet(173), Lin et al(174), Barakos and Drikakis(168)).
Gerolymos and Vallet(173) have adopted an implicit implementation
of the Launder-Sharma(41) k – ε model using a fully coupled, approx-
imately factored, implicit-backward Euler method. They applied this
method to transonic flow with shock-boundary layer interaction and
found it to be robust and stable for Courant-Friedrichs-Lewy (CFL)
numbers up to 50. Lin et al(174) also presented an implicit-coupled
solution in conjunction with Chien’s(44) k – ε model, using a biconju-
gate gradient method with incomplete lower-upper factorisation as
pre-conditioner. They concluded that this method (denoted 
Bi-CGSTAB) was more efficient than other conjugate-gradient variants.

Implicit unfactored methods, based on Newton sub-iterations and
Gauss-Seidel relaxation (IUNGS), have been successfully used both
for the Euler(175-177) and Navier-Stokes(178-181) equations, the latter in
conjunction with algebraic turbulence models. These studies demon-
strate that the method allows very high CFL numbers to be reached,
while the numerical solution is less sensitive to the choice of the
time step than approximate-factorisation methods. Other studies(182, 183)

have shown that implicit unfactored methods are also well-suited to
efficient parallel implementation on multi-processor platforms.

The success of unfactored methods in inviscid and viscous-flow
computations has encouraged their adoption in conjunction with
two-equation eddy-viscosity models(168, 184). This requires the calcu-
lation of the Jacobian and eigenvector matrices with the turbulence
variables included (see below). In the case of two-equation eddy-
viscosity models, these are 6 × 6 and 7 × 7 matrices for two- and
three-dimensional flows, respectively. When turbulence is repre-
sented via second-moment closure, a fully-coupled solution is a
formidable task, since the system then consists of 12 × 12 Jacobian
and eigenvector matrices. 

Morrison(185) has presented a coupled, approximate-factored solu-
tion for second-moment closure. However, his scheme was not fully
implicit, in that the source terms of the turbulence equations associ-
ated with production, redistribution and dissipation were only point-
coupled. Further simplifications introduced by Morrison led to a
scheme in which the turbulence-model equations were coupled only
through the presence of the turbulence energy (normal stresses) in
the Jacobian flux matrices; thus, the turbulence-transport equations
were, in effect, decoupled from those describing the mean flow. 

A more elaborate scheme for second-moment closure was
employed by Vallet(186) who adopted a flux-vector-splitting scheme
in conjunction with a point-implicit method. The coupling among
the fluxes as well as source terms was accounted for across the entire
set of twelve equations. Coupling was mainly established through a
full linearisation of all sources with respect to all turbulence quanti-
ties. The subset could then be solved by sub-iterations, rather than
full inversion (which would require very large amounts of computer
storage). There is no unambiguous evidence, however, that this level
of strong coupling is beneficial to stability and convergence. For
example, Vallet(186) reports convergence results for a transonic
channel flow, which show convergence stalls after a reduction in
residuals by less than two orders of magnitude. 

A somewhat simpler approach for implementing second-moment
closure in compressible Navier-Stokes methods was adopted by
Batten et al(187). They solved the mean-flow equations by means of a
block-coupled implicit scheme and the turbulence-transport equa-
tions as a segregated set. Thus, the fluxes of any turbulence variable
were assembled by reference to the contact-wave velocity and the
interface state of the density, and then an implicit decoupled equa-
tion was derived by including only diagonal components of the
convective, diffusive and source Jacobians in the equation, while the
remaining terms were treated explicitly. 
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Other routes to obtaining coupled solution schemes rely on the use
of explicit multistage algorithms, for example, the Runge-Kutta
method. This can also be combined with the implementation of
advanced solvers such as multigrid acceleration. Liu(188) has
presented such a coupling approach for the k – ω model, and
reported results for steady-flow computations around cascade
geometries. In the explicit-coupled approach, residual smoothing and
multigrid acceleration are uniformly applied to both the Navier-
Stokes and turbulence-model equations, with the eddy viscosity
being updated at each stage of the multi-stage Runge-Kutta scheme.
The corresponding loosely-coupled approach, based on the combina-
tion of the multi-stage Runge-Kutta scheme and multigrid solver,
has been employed by Liu and Zheng(189). In this case, the turbu-
lence-model equations were ‘frozen’ while the Navier-Stokes equa-
tions were being solved, and vice versa. Within the loosely-coupled
approach, the eddy viscosity need not be updated at every stage of
the explicit iterative process, but only at the first and last stages, the
advantage being a gain in economy. The loosely-coupled approach
generally leads to different convergence rates for the Navier-Stokes
and turbulence-model equations. 

In order to convey, in specific terms, an impression of the imple-
mentation issues that need to be addressed in implicit density-based
solvers, details are presented below for the particular fully-coupled
approach of Barakos and Drikakis(168), which includes a two-equa-
tion eddy-viscosity model (EVM). In particular, the Jacobian
matrices are derived, the Newton iteration is outlined, and the treat-
ment of the source-term matrix associated with the turbulence-model
equations is explained. Attention is restricted to the 2D set Equation
(92). In the case of the k – ω model, the dissipation rate ε in U is
obviously replaced by ω. Two-equation EVMs contain source terms
which are included in the matrix H in Equation (92). These terms
must also be treated implicitly if a fully-coupled, implicit implemen-
tation is to be obtained.

The implicit form of Equation (92) is written as follows: 

Next, the fluxes are linearised around the time-level n, e.g.,

where

Using Equation (95), Equation (94) is written:

The right-hand-side terms (RHS) are:

and

are the Jacobi matrices of the inviscid and viscous fluxes. Note that
the Jacobians contain terms from all equations, incuding those
describing turbulence transport. In the case of Reynolds-stress
models, these are 12 × 12 matrices. On the left-hand-side (LHS) of
Equation (97), the thin-layer viscous Jacobian matrices can be used

instead of the full ones (Barakos and Drikakis(168)). Numerical exper-
iments have shown, however, that for steady flows, the number of
iterations remains virtually unchanged if the full Jacobians are
utilised(178, 179). The above system can be solved by an approximate
factorisation or unfactored method. The former restricts the CFL
number to lower values than the latter, especially on highly-skewed
grids. Therefore, the implicit-unfactored method is preferred in
turbulent-flow computations. 

The implicit-unfactored method can be combined with efficient
iterative solvers such as a Newton-type method. The latter can be
obtained if a sequence of approximations† qv such that limv > 1 qv→
U n+1 is defined between the two time levels n and n + 1. In the case
of steady flow, a fixed Newton sub-iteration is utilised, whereas for
unsteady flow, Newton sub-iterations are carried out until conver-
gence is achieved at each real time step. The inversion of the final
discretised system of equations can be obtained by line- or point-
Gauss-Seidel relaxation techniques.

From Equation (97) it is obvious that the eigenstructure of Equa-
tion (92) is taken into account in the implicit part of the discretised
equations through the inviscid Jacobian matrices. The inviscid Jaco-
bians A and C are written in terms of their eigenvector and eigen-
value matrices, 

where Λ is the eigenvalue matrix and T, T–1 are the left and right
eigenvector matrices, respectively. In the case of two-equation
models, these are 6 × 6 matrices and include the contributions from
the turbulence-model equations (Barakos and Drikakis(168)). It is
sufficient for accuracy and efficiency to obtain second-order accu-
rate discretisation for the terms (An

inv∆U)ξ, (C
n
inv∆U)ς, (A

n
vis∆U)ξ and

(C n
vis∆U)ς.
The implicit-coupled implementation can be employed for all

types of two- and three-equation EVMs, both linear and non-linear.
The Jacobians of the inviscid and viscous fluxes remain the same for
all two-equation turbulence models. The treatment of source terms in
the matrix H is discussed below. 

4.2.3 Treatment of source terms

For present purposes, it is sufficient to consider the reduced system,

where

and Hk and Hε~ are the source terms associated with the transport
equations for k and ε~, respectively. The implicit discretisation of
Equation (101) is:
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†q denotes the conservative solution vector U at each Newton sub-iteration.
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U U tHn n n+ += +1 1∆ . . . (103)

After linearisation of the matrix H n+1 with respect to U, Equation
(103) is written as

A stability analysis of Equation (101) shows that the implicit
discretisation in Equation (104) is unstable if H > 0. In order to
increase the diagonal dominance of the inversion matrix, only terms
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with negative sign may be moved to the LHS of Equation (104) and
similarly to the LHS of Equation (97). For the case of the Launder-
Sharma(41) k – ε model, the negative source terms are given by:

where Cε2 is a coefficient and f2 is a damping function. Using 
µt = cµfµ[(ρk)2/ρε~] for the eddy viscosity (cµ is a numerical coeffi-
cient and fµ is a damping function), the source terms are written as:

and the Jacobian matrix ∂H/∂U is given by: 

The diagonal elements of Equation (107) are added to the diag-
onal elements of the inversion matrix of the system in Equation (97). 

A similar analysis to that above can also be followed for the case
of incompressible flows computed with the artificial-compressibility
method (Merci et al(190)).

4.2.4 Performance examples

Barakos and Drikakis(168) have contrasted the efficiency of the
implicit-coupled method against those of the implicit-decoupled and
fully explicit strategies. In the implicit-decoupled approach, the
implicit solution is used only for the mean-flow equations, while the
turbulence-transport equations are solved in a segregated fashion by
an explicit (Runge-Kutta) method. Table 2 shows the work units
required for the three solution strategies for the case of a transonic
flow over the axisymmetric bump of Bachalo and Johnson(191) (see
also Johnson et al(192)). The flow features shock–boundary-layer
interaction and separation and has been identified as Case 8611 in
Klein et al(193). The work units (WU) in Table 2 relate to the
Launder-Sharma(41) k – ε model; one WU corresponds to one minute
of CPU time on a HP9000/735/99 workstation using double preci-
sion computer arithmetic. The convergence results demonstrate that
the implicit coupled implementation is the most efficient.

The implementation of non-linear EVMs can be undertaken in a
similar fashion, as shown by Barakos and Drikakis(194). Results for
the CPU time (work units) of the fully-coupled, implicit implemen-
tation of several linear and non-linear (two- and three-equation)
EVMs are shown in Table 3. The work units refer to computations
for the Case 8611(190-192) as well as for Delery’s(195) transonic
channel-bump flow (Case C). 

The non-linear three-equation EVM (k – ε – A2) of Craft et al(134)

is the most expensive variant employed. The increased CPU time for
this form, compared to the other models, is due to the presence of the
equation for A2 (the second invariant of Reynolds-stress anisotropy,
Equation (64)). This can also be observed by reference to the CPU
times required for the three-equation and two-equation NLEVMs
(Craft et al(134)). As for linear models, the SST (shear-stress-trans-
port) model of Menter(29) is slightly more CPU demanding than the
Launder-Sharma (LS) form. An advantage of the SST model is that
it can be used in conjunction with coarser grids in the near-wall
region — with values of y+ ≈ 2 at the first grid point off the wall —
without adverse effects on the accuracy of the results. On the other
hand, the k – ε-based models, both linear and non-linear, only
converge (Barakos and Drikakis(194)) if the wall-nearest y+ value is of
order 1 and below.

Figure 3, taken from Leschziner et al(78), shows the convergence
histories for four models applied to a Langley jet/afterbody flow:
two EVMs and two RSTMs (JH denoting the Jakirlic-Hanjalic
model(57) and MCL a model documented in Batten et al(77)). The
figure demonstrates that judicious implementation allows Reynolds-
stress models to be converged at roughly the same rate as that for
much simpler linear EVMs.

4.3 Pressure-based approach

Pressure-based schemes have emerged in the context of efforts to
compute incompressible or weakly compressible flows and are much
less popular in aerodynamics. In essence, the mass-conservation
equation is replaced by a pressure Poisson (or pressure-correction)
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Numerical Work units (WU) Convergence error
approach

Implicit-coupled 1⋅0 10–7

Implicit-decoupled ~1⋅55 10–7

Explicit ~1⋅4 10–2 (stalled at 
this level)

Table 2
Work units required by different implementation approaches of
turbulence models; a WU corresponds to 1 minute of CPU time

on a HP9000/735/99 machine, using double-precision arithmetic;
results taken from Barakos and Drikakis(194)

Table 3
Work units required for linear and non-linear EVMs based on the

fully-coupled, implicit implementation; a work unit 
corresponds to one minute of CPU time on a HP~9000/700/99

workstation; results taken from Barakos and Drikakis(194)

Model Case 8611, Bachalo bump Delery bump, Case C
LS 610 —
SST 738 1,090

NL k – ε 890 1,332

NL k – ε – A2 1,028 1,803

†Similar extensions to the zero Mach number limit have been presented for
methods originating from hyperbolic conservation laws(201-203).

Figure 3. Convergence histories for four turbulence models, two of
which are second-moment closures (JH(57), MCL(77)), applied to

Langley jet-afterbody flow (taken from Leschziner et al(78)).



equation derived by combining the momentum and mass-conserva-
tion equations. A number of compressible-flow extensions (for M > 1)
have been formulated(196-200) with the aim of deriving a solution
framework for a broad range of Mach numbers†, from low subsonic
to supersonic.

Pressure-based solvers are almost always only partially coupled,
involving a sequential solution of the equations. Hence, the incorpo-
ration of transport models of turbulence usually entails little more
than stringing the related differential equations to those governing
the mean flow, with minimal implicit coupling, usually effected via
a source-term linearisation and the use of negative fragments to
enhance diagonal dominance, similar to that outlined in Section
4.2.3. This explicitness can be a disadvantage, but there is relatively
little that can be done to address this. 

An important exception arises in the case of Reynolds-stress-
transport models. The distinction is rooted in the absence of the
crucially important second-order viscosity-related terms, which
changes the character of the momentum equations from elliptic to
hyperbolic. In effect, turbulence transport in the mean-flow equa-
tions is represented by substantial source-like terms, which makes
the equations extremely stiff. In this case, elaborate stability-
promoting measures are needed, and these are documented in
considerable detail in Lien and Leschziner(199) and Leschziner and
Lien(204).

One key measure is the extraction of apparent (pseudo-) viscosi-
ties from the Reynolds-stress-transport equations, which then allows
the introduction of stability-promoting second-order-gradient terms
into the mean-flow equations. As shown by Lien and Leschziner(199),
this can be done either at the differential (pre-discretisation) level or
after discretisation. The latter option is indicated below in highly
simplified terms to convey the essential idea.

With attention directed towards the normal stress u
—2, the discre-

tised form of the stress-transport equation, integrated over a rectan-
gular finite volume, may be written:

where the subscript P denotes the cell-centre at which the normal
stress is being computed, the RHS sum represents, through Am, the
influence of neighbouring cell-centre values on P (via the fluxes of
the normal stress through the faces of the finite volume) and S–u2
contains all fragments not included in other RHS terms. The crucial
second term on the RHS contains an approximation of the x-wise 
U-velocity derivative across the cell. This term arises naturally in the
discretisation process as a consequence of the presence of the stress-
generation term P–u2 (see Equation (3), for example) in the stress-
transport equation. The premultiplier of the velocity difference, iden-
tified by µ11, turns out to be an unconditionally positive group of
terms of the form

the case of staggered-grid schemes (rarely used now for complex 3D
problems), a staggered arrangement of the stresses contributes
greatly to stability and convergence (Huang and Leschziner(205)).
This arrangement involves locating stress nodes on the faces of
momentum cells, midway between the velocity nodes used to
approximate the associated ‘driving’ strain, the association being
implied by the Bousinesq stress-strain relationships. The purpose of
this is to secure, numerically, a strong coupling between the stress
and strain fields. The introduction of fourth-order stress diffusion in
collocated-cell schemes, already mentioned, serves a similar
purpose. 

With these measures in place, a number of quite complex aerody-
namic flows, both compressible and incompressible, have been
computed with RSTMs, among them separated flow over aerofoils
and prolate spheroids at high incidence (Lien and Leschziner(206,207)),
transonic bump flows (Lien and Leschziner(112), Hasan and
McGuirk(208)), 3D subsonic and supersonic impinging jets
(Leschziner and Ince(114)) and 3D transonic jet-afterbody flow
(Hasan et al(209)). While in all cases, the resource requirements of the
RSTM were larger that those for EVMs, the CPU overheads were
relatively modest — typically, of order 1·5-3. 

5.0 ASSESSMENT OF MODEL 
PERFORMANCE

5.1 Introduction

Any attempt at a definitive and secure assessment of the predictive
performance of turbulence models over a wide range of flow condi-
tions is fraught with difficulties, for this performance is sensitive to:
● even very minor changes to the turbulence model in terms of its

numerical constants, flow-specific correction terms and limiters;
● details of the model's implementation into the numerical frame-

work;
● numerical errors, grid topology and convergence criteria;
● the location of computational boundaries and the realism and

completeness of boundary conditions;
● the sensitivity of the models to the boundary values of the trans-

ported turbulence scales;
● the accuracy and completeness of the experimental data, and the

applicability of corrections (e.g. tunnel corrections for transonic
flows).

In very many cases, a turbulence model or variant has only been tested
by the originator of that model, most frequently for a narrow range of
flow conditions. Often, no statement is given on numerical accuracy or
boundary conditions. In many cases, especially in compressible flows,
turbulence quantities are not available, and boundary conditions need
to be inferred from the mean-flow data — for example, by way of the
mixing-length or equilibrium considerations, see Equations (11)-(17).
This can be done in a number of different ways and can have a signifi-
cant influence on the predictions.

The most valuable sources of information on model performances
are concerted and targeted validation programmes undertaken by
teams, with the specific objective of identifying generic predictive
characteristics of model types and highlighting broadly applicable
differences. These studies are especially valuable if undertaken by
several groups in parallel with more than one numerical method and
if the results are demonstrated to be practically independent of the
numerical framework. One such programme, or rather series of
programmes, was undertaken by NASA Ames in the mid-1990s by
Coakley, Marvin, Huang, Bardina and their colleagues. Some of the
conclusions presented below arise from this work. Other useful
sources are EU-funded validation projects such as EUROVAL
(Haase et al(210)), ECARP (Haase et al(211)) and, to a lesser extent,
ETMA (Dervieux et al(212)), although these (especially the last) were
not as closely interactive as would be desirable for a secure assess-
ment. The series of ERCOFTAC workshops on refined turbulence
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where C is a function of model constants and geometric grid parame-
ters. Upon insertion of Equation (108) into the U-momentum equa-
tion, there arises, quite naturally, a second-order (diffusive) velocity-
derivative term which is associated with the (apparent) viscosity µ11.
The analogous treatment of other stress-transport equations gives
rise to corresponding apparent viscosities µ22, µ12 and µ21 (for 2D
conditions), the overall result being a stabilisation of the iterative
solution of the mean-flow equations.

Other important measures include the implicit introduction of arti-
ficial fourth-order stress diffusion into the discretised stress-transport
equations (in fully-colocated finite-volume schemes) and a practice
which allows diagonal dominance of the discretised stress-equation
sets to be substantially enhanced, along the lines indicated in Section
4.2.3, through a linearisation of the stress-source terms with frag-
ments being arranged to be unconditionally positive and negative. In



modelling is potentially useful, but has focused mainly on internal
flows and has included no over-arching quality-control framework
for undertaking the computations submitted to the workshops.
Finally, national validation programmes focusing on carefully
selected test flows and involving a close collaboration between
industrial and university groups offer some fairly reliable conclu-
sions. Unfortunately, the amount of information on the performance
of advanced anisotropy-resolving models is quite limited, partly
because only a few groups are able to undertake computations with
these models for complex flows. Some individual studies have been
quite extensive, however, involving a rational sequence of test cases,
from homogeneous to highly demanding 3D flows, and can be
trusted to provide fairly reliable information on the performance of
these models. 

In what follows, the predictive performance of models is
reviewed, for steady-flow applications, by model category. This is
done, in most cases, by reference to studies involving what are held
to be relatively reliable comparisons of several models contained
within one and the same study. With few exceptions, isolated verifi-
cations of single models are not included, but these may be found, in
most cases, within publications by the respective model originators
which are referred to in Section 3. Results for turbulent unsteady
flow are much rarer, and broad comparative studies are virtually
non-existent. These are therefore reviewed separately, at the end, in
sub-sections pertaining to the few application areas for which turbu-
lence-modelling studies have been undertaken.

5.2 Algebraic models

There is relatively little that needs to be said about algebraic models.
They are designed for attached flows and should only be applied to
such (a fact disregarded with astonishing frequency, even as recently
as 1997), in which case differences in the solutions they return are
modest in most circumstances. This applies, in particular, to attached
aerofoil flows, even those around multi-element high-lift configura-
tions (e.g. NLR 7301 with flap) and wings (e.g. DLR-F4), where
algebraic models return entirely adequate results, as long as the flow
does not approach separation (see Haase et al(211)). An informative
fundamental study undertaken within EUROVAL (Haase et al(210))
involved the application of the Cebeci-Smith and Baldwin-Lomax
models, as well as two half-equation models, to five boundary layers
at zero, favourable and adverse pressure gradients. In the most taxing
retarded boundary layers, some differences between models did
emerge, with the Baldwin-Lomax model underestimating the
response to the adverse pressure gradient and the Cebeci-Smith
model performing as well as the best of the half-equation models. In
flows approaching or involving separation, algebraic models do not
perform well, tending to predict excessive levels of eddy viscosity,
inhibiting separation or returning a seriously erroneous representa-
tion of the separation process, if at all captured. This is illustrated,
for example, by computations for the Aerospatiale ‘A’ aerofoil in
Haase et al(210) and for NACA 4412 aerofoil in Haase et al(211). In
transonic flows, algebraic models provide a reasonable response in
weak-interaction conditions, but misrepresent the interaction associ-
ated with shock-induced separation. There are several examples of
this included in Haase et al(210) for the RAE2822 aerofoil (especially
case 10) and for Delery’s(213) transonic bump flows (especially the
separated case C). Here again, algebraic models under-estimate the
response to the adverse pressure gradient, prevent separation and
return a shock position which is too far downstream. Poor perfor-
mance is also observed in hypersonic, separated compression-corner
flows for which Horstman(214) finds a widely varying, non-system-
atic level of agreement of algebraic-model solutions with experi-
mental data (see also Dolling(215)).

5.3 Half-equation models

Half-equation models have hardly been used outside the area of
external aerodynamics. Their main attraction is their simplicity and

economy, based on a combination of an algebraic viscosity prescrip-
tion across the flow with an evolution equation along it. This combi-
nation implies, or leads to the hope of, a favourable performance in
attached flows that depart from equilibrium as a result of significant
streamwise changes. 

Among the group of one-equation models, that of Johnston and
King(31) and its improved form by Johnson and Coakley(34) have
been the two most extensively applied and tested, mainly in the
industrial environment in which computational economy is of
outstanding advantage. Several flows computed with these models
are included in Haase et al(210, 211) and in Menter(216). One flow is the
RAE 2822 transonic aerofoil. For the most challenging separated
Case 10, significant differences are reported in Haase et al between
solutions arising from slight computor-specific variations of the
models, and no firm conclusion can be drawn, except that most
implementations result in defects not dissimilar to those observed
with algebraic models. In contrast, Robinson and Hassan(217) report a
close to excellent resolution of the shock–boundary layer interaction
over the RAE 2822 (Case 10) aerofoil and data for the NACA 0012
aerofoil with the Johnson-King model. Substantial variability in
performance is also observed in results for shock-induced separation
over Delery’s channel bump (Cases A & C), with only one imple-
mentation showing marked improvements relative to algebraic
models in respect of capturing the separation (Case C). However,
that same implementation gives an overly sensitive representation of
the weak interaction on the plane wall opposing the bump and also
in the weak-interaction case A. An outcome of a study, also reported
in Haase et al(210), of five incompressible boundary layers is that
both the Johnson-King and, to a lesser extent, the Johnston-Coakley
models are not well suited to near-equilibrium conditions — a
conclusion consistent with the performance of the models in weak
shock–boundary-layer interaction. In particular, both give fairly poor
results for skin-friction, shape-factor distributions and universal
velocity profiles. Menter(216) reports computations for two deceler-
ating boundary layers and a thin separated flow from a cylinder in a
diffuser, and these show the Johnson-King model to perform well
across all flows — indeed better than the k – ω model. Results for
incompressible separation from two high-lift aerofoils, the Aerospa-
tiale A and NACA 4412, both documented in Haase et al(211), are
mixed. In the former, performance is unclear as there are inconsis-
tencies between contributed solutions. However, in the latter geom-
etry, good results are achieved with the Johnston-King model which
returns the extensive suction-side separation observed experimen-
tally. Overall, the performance of half-equation models is too vari-
able to permit a definitive conclusion. Menter’s observations, in
particular, provide indications that the Johnson-King model has
advantageous characteristics in retarded boundary layers and thin
separated flows, through its lower eddy viscosity in strong non-equi-
librium conditions. However, half-equation models, do less well in
attached weakly non-equilibrium boundary layers.

5.4 Two-equation models

There have been numerous studies of two-equation models for
external as well as internal flows. Gerolymos and Vallet(173) provide
an overview table of over 30 computational studies of transonic
flows with two-equation models (mostly k – ε). A broad conclusion
emerging from these is that models of this type, unless corrected,
tuned to specific conditions or used with different constants relative
to the base-line formation, generally return disappointing results in
separation (although much better than algebraic models). This is
especially so in separation from curved surfaces, in decelerating
boundary layers, in curved shear layers and in shock–boundary-layer
interaction. Better performance is returned when separation is
provoked by sharp edges, such as in backward-facing steps. 

There is a fair number of studies that report relatively modest
performance differences between basic k – ε and k – ω formulations.
A difficulty here is that any intrinsic differences between the ε- and
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ω-equations are clouded by the strong dependence of performance
on the precise value of the numerical constants in the ω-equation, the
nature of the viscosity-related damping functions and the inclusion
or omission of the fragment of mixed k- and ω-derivatives (see
Equation (57)). For example, Jang et al’s(218) computations of sepa-
rated flow behind a streamwise periodic channel constriction show
that the k – ω model yields significantly stronger sensitivity to
adverse pressure gradient, hence giving a longer recirculation zone,
but this appears to be linked, principally, to the viscosity-dependent
damping functions†. There is ample evidence pointing to excessive
near-wall turbulence that is returned by both types of length-scale
equation, thus hindering deceleration and separation, albeit to a
different extent. Menter(216), Huang(219) and Bardina et al(76) show
this for Driver’s(220) incompressible separated boundary layer, the
Bachalo-Johnson(191) transonic-bump flow and the RAE 2822 aero-
foil; Rung et al(221) for Delery’s separated bump flow, the RAE 2822
aerofoil and the ONERA M6 wing (Schmitt and Charpin(222));
Apsley and Leschziner(74) for the separated diffuser flow of Obi et
al(223); Barakos and Drikakis(224) for the Bachalo-Johnson(191) tran-
sonic-bump flow; Barakos et al(225) for the subsonic flow around the
ONERA-A aerofoil(33) and the transonic flow around the RAE 2822
aerofoil(22); Abid et al(226, 227) for Coles and Wadcock’s(34) measure-
ments of the flow around the NACA 4412 aerofoil, the RAE 2822
aerofoil and the axisymmetric bump flow. A similar message is
conveyed in a compilation by Dolling(215) of computational studies
for compression-ramps. Finally, Robinson and Hassan(217) report a
poor performance of the k – ω model for transonic flow over the
RAE 2822 (Case 10) and NACA 0012 aerofoils and subsonic sepa-
ration over the NACA 4412 aerofoil. These defects are partly rooted
in fundamental weaknesses of the eddy-viscosity formulation and
partly in the tendency of the length-scale equation to give excessive
values for this scale. To this must be added the strong sensitivity of
the k – ω model to the free-stream level of ω (Menter(75), Bardina et
al(76)), which makes the model perform especially badly in free shear
layers (Bardina et al(76)). The use of the time scale τ as a surrogate
length-scale equation in the models of Speziale et al(69) and Kalitzin
et al(70) offers only marginal benefits, if judged on the basis of solu-
tions for the separated flow over the Aerospatiale ‘A’ high-lift aero-
foil (Haase et al(211)). In a study by Coakley and Huang(48), six two-
equation models have been applied to strong shock-wave
boundary-layer interaction on a cylinder-flare geometry and
compression corners at Mach 2⋅84-9⋅22 (see also Dolling(215)). While
the models were found to give a wide range of performance in terms
of separation and reattachment behaviour, the basic k – ω model was
demonstrated to offer no intrinsic advantages over the k – ε frame-
work. Similar conclusions are offered by Haidinger and 
Friedrich(228, 229), again for supersonic ramp flows, although
Coratekin et al(230) show that the inclusion of compressibility correc-
tions to the k – ω can substantially improve the model’s predictive
capabilities for ramp flows. The performance of various k – ε models
for shock-induced separation in transonic bump, aerofoil and jet-
afterbody flows is also deficient, as shown in Haase et al(210), Lien
and Leschziner(112), Zhou et al(231), Barakos and Drikakis(224),
Gerolymos and Vallet(173) and Leschziner et al(78), among many
others. All models again under-estimate the strength of the interac-
tion, failing to resolve separation and misplacing the shock. Broadly
consistent conclusions also emerge from many studies of three-
dimensional flows — for example in separated fuselage-like flows
(Lien and Leschziner(207)) and wing-body/junction flows, both
subsonic (Apsley and Leschziner(79)) and supersonic (Batten et
al(77)). Interestingly, the predictive defects in three-dimensional
flows occasionally appear to be less serious than in two-dimensional
ones, despite the added strain complexities involved (e.g. Robinson
and Hassan’s(217) computations of shock–boundary-layer interaction
over a cylinder/offset-flare juncture). This can be attributed, at least

in some cases, to the larger contribution of convection to the balance
of processes governing momentum transport, arising from generally
much larger flow curvature.

The addition of corrections to the basic two-equation-model forms
can have major consequences to the predicted behaviour. One modi-
fication routinely adopted is the ‘Yap’ correction (Equation (44)),
and this tends to slightly improve the prediction of k – ε models in
adverse pressure gradients. The most influential correction is that of
Menter (see Equation (59)), which limits the shear stress by linking
it to the turbulence energy, thus over-riding the eddy-viscosity rela-
tion. It will be recalled that Menter’s model is a hybrid, combining
the k – ε and k – ω models. This combination is not, in itself, a key
feature. Of much greater importance is the shear-stress limiter, and
several studies show the introduction of this limiter to result in a
much improved behaviour in separated flows, including shock-
induced separation in several transonic aerofoil and wing configura-
tions (Huang(219), Marvin and Huang(144), Batten et al(77), Haase et
al(211)), jet-afterbody flows (Leschziner et al(78)), incompressible
aerofoil flows (e.g. Aerospatiale A and NLR 7301 two-element
configuration, Haase et al(211)) and dynamic stall in oscillating aero-
foils (Srinivasan et al(232), Ekaterinaris and Menter(233)). Excessive
sensitivity of SST (shear-stress-transport)-model solutions to adverse
pressure gradient for transonic-bump and supersonic compression-
ramp flows is reported, however, by Liou et al(62). Flows in which
the SST model does not work well include some complex three-
dimensional configurations — for example, incompressible
wing/body-junction flow (Apsley and Leschziner(79)) and strong
three-dimensional shock–boundary-layer interaction in a channel
with a skewed bump (Leschziner et al(234)). In both cases, the SST
model appears to return too low level of stresses, resulting either in
excessive separation or insufficient post-shock recovery, the latter
leading to grossly excessive transverse motion in the recovery
region.

5.5 One-equation models

Of the group of one-equation models the variant most extensively
investigated for aeronautical flows is the Spalart-Almaras model(24).
In particular, Bardina et al(76) have included this model in their wide-
ranging investigations of two-equation models mentioned earlier.
Not surprisingly, in view of the details of the calibration process, the
model performs well in thin shear flows, except for the round jet. It
also does well in a 3D (close to infinitely) swept-bump boundary
layer examined by Wu and Squires(235), although the 3D distortion in
this flow is relatively benign. In the more demanding separated
flows (Driver(220), Bachalo-Johnson(191), Cook et al(22)) the model is
generally observed to return rather indifferent solutions (though
better than some arising from two-equation formulations!), often
under-estimating the separation region and the separation-related
pressure plateau on the surface. Liou et al(62) report, in contrast,
examples in which the model returns excellent performance for the
Bachalo and Johnson transonic bump flow and even excessive sensi-
tivity to strong oblique shocks impinging on a flat-plate boundary
layer. That the model can give acceptable performance for separated
flows is remarkable, as it relies on an explicit prescription of the
length scale, by reference to the wall-normal distance. This
favourable behaviour is due mainly to the fact that the separation
zones in the test cases considered are elongated and rather thin, so
that the turbulence structure within the separated zone and the sepa-
rated shear layer above it is dominated by the wall. 

Menter’s one-equation equivalent of his SST two-equation model
is a second formulation of particular interest in aerodynamic applica-
tions, because of the favourable performance of the SST form. It is
recalled that the one-equation variant has been derived by combining
the k- and ε-equations and inserting Bradshaw’s shear-stress/turbu-
lence-energy relationship into the result. Applications of the model
to Driver’s separated boundary layer and to a separated backward-
facing step by Menter are, unsurprisingly, found to be close to the 
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k – ε-model solutions, although use of the Bradshaw relation results
in slight improvements, as would be expected in view of the previ-
ously noted performance of the two-equation SST model. This
observation and those made in relation to the Spalart-Almaras model
lead to the conclusion that, for relatively benign, two-dimensional
flows featuring moderate separation, some one-equation models are
preferable to basic two-equation models which have a poor record of
resolving separation.

Other one-equation models examined in Haase et al(211) for the
separated Aerospatiale ‘A’ aerofoil flow are two variants of Wolf-
shtein’s model and the Baldwin-Barth model. Only one variant
returned a separated boundary layer, none can be said to have
performed satisfactory, and none is therefore recommended for
general separated flows.

5.6 Reynolds-stress models

Early applications of Reynolds-stress models (RSTMs) to aerospace-
related problems were directed, principally, towards predicting
shock–boundary-layer interaction and were motivated by the poor
performance returned by two-equation eddy-viscosity models. Studies
by Vandrome and Ha Minh(236), Benay et al(237), Leschziner et al(238),
Lien and Leschziner(112) and Morrison et al(239), all concerned with
shock-induced separation over nominally two-dimensional channel
bumps and/or the RAE 2822 aerofoil, conveyed a broadly positive
message on the predictive advantages gained from RSTMs relative
to k – ε eddy-viscosity models. Thus, separation was found to be
predicted at the correct position, the lambda-shock structure and the
extent of the recirculation zone were better resolved, and the charac-
teristic surface-pressure plateau associated with the separation zone
was captured. It must be said that this outcome was no surprise to
those familiar with the much more extensive earlier experience with
RSTMs in predicting incompressible, mostly internal flows. 

Over the past decade, there has been a steady, albeit slow, broad-
ening in the range of conditions and problems computed with
RSTMs and, more recently, with non-linear eddy-viscosity models
(NLEVMs). Some of the most complex flows investigated over the
past three years with RSTM variants include shock–boundary-layer
interaction in a Mach 2 fin–body-junction flow (Batten et al(77)) and
in a Mach 1⋅8 jet injected into a Mach 3 cross-flow (Chenault and
Beran(240), Chenault et al(241)), shock-induced separation in two- and
three-dimensional jet-afterbody configurations (Leschziner et al(78))
and over a swept bump in a channel (Gerolymos and Vallet(242)),
shock–boundary-layer interaction over a full body–wing–fin model
of a generic fighter configuration (Leschziner et al(78)) and dynamic
stall flows around aerofoils (Drikakis and Barakos(243)). The addi-
tional challenge of predicting heat transfer with RSTMs, especially
in hypersonic flow, has been addressed by Huang(156) and Huang &
Coakley(244). 

The rather subdued rate of uptake of RSTMs for aerodynamic
flows is rooted, on the one hand, in the perception that this level of
modelling is too complex and resource-intensive for practical appli-
cations, and, on the other hand, in the observation that many, if not
most, flows in aerodynamic practice can be adequately computed
with modified or corrected forms of two-equation models, such as
Menter’s(29) SST model. There is also the view that the variability in
performance among different variants of RSTM contradicts the
notion of RSTM being an intrinsically superior modelling frame-
work, and that a great deal depends upon the precise model form and
its calibration. None of these arguments can be categorically negated
or dismissed. RSTMs are undoubtedly more demanding than two-
equation models. However, the availability of a whole range of
stability and convergence-promoting measures (Leschziner and
Lien(204)) now allows the resource overheads of RSTM computa-
tions, relative to two-equation models, to be kept to within 20-50%,
even in the case of complex three-dimensional flows. Indeed,
Leschziner et al(78) demonstrate that, in certain circumstances,
RSTMs converge faster than two-equation models. The argument

that simpler models can be made to return equally adequate solutions
is not disputed either, but it must be borne in mind that these models
are not general and can fail badly in conditions outside those
encountered in relatively thin near-wall flows (with or without sepa-
ration). This emerges with some force from studies by Batten et al(77)

and Apsley and Leschziner(79), the former on an impinging jet and
the latter on a subsonic wing–body-junction flow. In both cases, the
SST model returns indifferent or even poor results. Hence, the key
distinction relates to model generality. If width of applicability is not
a high-priority issue then the adoption of a simple, non-general, but
well-tuned model is entirely defensible. However, in complex flows
remote from walls, simple models can be seriously inadequate. One
example is a whole range of flows involving multiple impinging jets
in cross-flow, pertinent to VSTOL flight. In such cases, as well as
supersonic jet injection into supersonic cross-flow (Chenault and
Beran(240), Chenault et al(241)), RSTMs yield a distinctly better repre-
sentation of jet, fountain and ground-vortex structure (Leschziner
and Ince(114)). Moreover, in the case of underexpanded impinging
jets, a RSTM is virtually the only type of model capable of returning
the correct response of turbulence to the series of compression and
expansion waves in the jet as it develops towards the strong stand-
off shock above the impingement plane. 

Regrettably, there are very few broad comparative studies in
which several RSTM solutions have been included and contrasted
with other model classes. The compilations of Haase et al(210) and
Haase et al(211) contain a few RSTM or implicit-ASM contributions
for the Delery(213) channel bumps, Cook et al’s(22) transonic RAE
2822 aerofoil, Piccin and Cassoudessale’s(33) high-lift ‘Aerospatiale
A’ aerofoil and Meier et al’s(245) 6:1 prolate spheroid. In most cases,
a single RSTM solution, or at most two, are contrasted with those of
simpler models, and are generally shown to give a superior represen-
tation of separation-related processes. Much more extensive exposi-
tions of studies contributing to the above compilations are those of
Leschziner et al(238) and Davidson(246), both on shock-induced two-
dimensional separation, Lien and Leschziner(206) on the separated
‘Aerospatiale A’ aerofoil flow, and Lien and Leschziner(207) on sepa-
ration from a sprolate spheroid at 10° as well as 30° incidence. A
compilation by Hasan and McGuirk(208) of 12 solutions for Bachalo
and Johnson’s axisymmetric bump, contributed by a number of
collaborating investigators, includes RSTM results which are
entirely consistent with others mentioned earlier. A particularly chal-
lenging flow is that involving shock-induced separation over the
skewed (swept) channel bump of Pot et al(247). This is a generic
model of a swept transonic wing flow, but is much more complex
and demanding, because the interaction between the shock and all
four walls is important. This flow was modelled with a RSTM by
Gerolymos and Vallet(242), with some modest improvements being
obtained relative to the solution with a k – ε model. This same flow
was also computed by Leschziner et al(234) with NLEVM variants, a
study which will be revisited in the next section.

5.7 Non-linear eddy-viscosity and explicit algebraic
Reynolds-stress models

Although NLEVMs and EARSMs are simpler than RSTMs, their
application to aeronautical flows is considerably rarer, mainly
because they have emerged more recently, as a significant model
category, in response to the desire of practitioners for formulations
that combine some of the predictive properties of RSTM with the
numerical advantages of EVMs. An overall conclusion arising from
a variety of studies on all types of flow, not only those pertinent to
external aerodynamics, is that the performance of NLEVMs and
EARSMs is more variable than that of RSTMs. This is rooted, on the
one hand, in major fundamental differences, in terms of derivation,
between NLEVMs and EARSMs (see Section 3.3.3), and, on the
other hand, in the high sensitivity of NLEVMs to the calibration
process for the coefficients of the non-linear fragments in the stress-
strain/vorticity relations. In addition, the performance of a NLEVM
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depends greatly on the order of terms included and the dependence
of cµ (or lack of it) on the strain and vorticity invariants, the latter
being highly influential in relation to the response of the model to
high strain rates. In fact, some studies suggest that the precise form
of the dissipation-rate equation (especially the coefficients therein)
and the form of cµ carry more weight than the inclusion or exclusion
of the higher-order terms that are responsible for the resolution of
anisotropy and the sensitivity to curvature. 

Some applications of NLEVMs to aeronautical flows are those of
Lien and Leschziner(206, 207), Loyau et al(141), Leschziner et al(234, 248),
Hasan et al(208), Barakos and Drikakis(224) and Apsley and
Leschziner(79). Lien and Leschziner’s two studies focus, respectively,
on the ‘Aerospatiale A’ aerofoil and a 6:1 prolate spheroid at high
incidence, and include computations with variants of Shih et al’s(131)

quadratic NLEVM. The results demonstrate that the NLEVMs can
reproduce the behaviour of RSTMs (for which solutions are also
included), but that the predictions are quite sensitive to the precise
functional dependence cµ(S, Ω). Loyau et al’s concern is with shock-
induced separation over Delery’s channel bumps, Bachalo and
Johnson’s axi-symmetric bump and Pot et al’s swept channel bump,
while Barakos and Drikakis(224) consider Bachalo and Johnson’s
case. In their first study, Loyau et al examine four NLEVMs and
show that, while all return improvements relative to the k – ε frame-
work, owing mainly to their greater sensitivity to adverse pressure
gradient, agreement with experiment varies significantly. There are
also major differences among models in respect of their ability to
resolve normal-stress anisotropy, reflecting the different approaches
to calibration taken by the models’ respective originators. Barakos
and Drikakis(224) present conclusions on the performance of two vari-
ants of Craft et al’s(134) cubic NLEVM that are broadly consistent
with those of Loyau et al’s. Loyau et al’s other study, concerned
with the swept-bump flow, reveals some major predictive weak-
nesses in all three NLEVMs investigated for this very challenging
flow. While all models return a much better resolution of the
shock–boundary-layer interaction process itself, relative to the k – ε
model, the post-shock recovery is too slow, reflecting insufficient
turbulent mixing and accompanied by a seriously excessive level of
transverse motion. Very similar defects are also displayed by
Menter’s(29) SST model which tends, as noted in the previous
section, to yield predictions that are often close to those arising from
RSTMs. Thus, in this flow, Reynolds-stress modelling appears to be
distinctly superior to NLEVMs, if Gerolymos and Vallet’s(242) results
are accepted as being correct. Hasan et al’s(209) study focuses on
shock-induced separation over Putnam and Mercer’s(250) rectangular
jet-afterbody configuration, and it includes computational solutions
with Craft et al’s(134) cubic NLEVMs, which are much closer to the
experimental data than those arising from the k – ε model (a subset
of these results can also be found in Leschziner et al(234)). These
solutions are also close to those obtained by Leschziner et al(77) with
a RSTM. Apsley and Leschziner’s(79) study investigates the perfor-
mance of 12 turbulence models for Fleming et al’s(251) wing–body-
junction flow, including two cubic NLEVMs. For this flow, in
contrast to all other cases, the NLEVMs fail to give solutions which
are clearly superior to simpler models, and this is conjectured to be
due to a partial cancellation of the contributions arising from the
quadratic and cubic fragments. This case is one that illustrates the
background to an observation made in the introductory comments in
this section about the variability in the predictions emerging from
NLEVMs. 

As noted in Section 3.4, EARSMs differ fundamentally from
NLEVMs in so far as the former have been derived from particular
Reynolds-stress models, with the transport of the anisotropy
neglected. An important implication of this fact is that, unless stress
convection makes a significant contribution to the stress balance, the
performance of a EARSM should be close to that of the baseline
Reynolds-stress model from which it was derived. It is arguable,
therefore, that an EARSM may be viewed as a Reynolds-stress model,
except in terms of the different computational implementation and
solution both entail. Abid et al(226, 227) report the application of an

EARSM, derived from the RSTM of Speziale et al(100), to the RAE
2822 aerofoil (though only to the attached Case 9), the NACA 4412
aerofoil, Bachalo and Johnson’s axisymmetric bump and the ONERA
M6 wing. In all three 2D cases, impressive improvements are reported
relative to Wilcox’s k – ω model which performs poorly for the sepa-
rated flows. Results achieved for the ONERA M6 wing are also good,
but are not compared with other models. Impressive performance is
also demonstrated by Rung et al(221) who apply their EARSM, again in
comparison with Wilcox’s k – ω model, to Delery’s transonic bump
flow, the RAE 2822 transonic aerofoil flow and the ONERA M6 wing.
This outcome may be argued to add weight to arguments made earlier
in favour of RSTMs. In attached flow over multi-element aerofoils
Rumsey et al(252) show that EARSMs offer no particular advantages
over NLEVMs, or even linear EVMs, but in that case transition domi-
nates as the feature dictating model performance.

5.8 Unsteady flows

5.8.1 Application needs 

In the context of aerodynamics, the numerical prediction of unsteady,
turbulent and compressible flows around moving bodies is motivated
by the need to understand flow phenomena associated with the behav-
iour of aircraft during manoeuvres and around helicopter rotors. The
above applications involve (unsteady) separation, transition, relami-
narisation and shock–boundary-layer, viscous–inviscid, vortex–body
and vortex–vortex interactions. A better understanding of the funda-
mental flow physics in the above applications will allow, among
others, better prediction methods for flow control to be developed,
thus enhancing the performance of aircraft and helicopters. 

The cost of wind-tunnel or flight experiments in unsteady condi-
tions is exceptionally high. Moreover, the information obtained
through experiments is inevitably restricted to global quantities,
surface distribution and, at best, a few sets of data for cross-flow struc-
ture. The numerical prediction of unsteady flows is a promising alter-
native, providing far more detailed information than experiments, but
it is especially challenging and involves uncertainties over and above
those arising in computations for statistically steady flow.

5.8.2 Fundamental studies 

Algebraic eddy-viscosity models have been used extensively in
unsteady viscous-flow codes because of their simplicity. However,
investigations of oscillating turbulent boundary layers using alge-
braic models have shown that these models result in substantial
inaccuracies with respect to the evolution of unsteady integral para-
meters and the phase shift of the wall shear stress(253, 254).

Two-equation EVMs, primarily the k – ε model, have been exten-
sively used in simulating unsteady turbulent boundary layers(253-256).
An instantaneous representation of the logarithmic law of the wall
does not generally exist in unsteady flow. Hence, simple wall func-
tions, based on the log law and the turbulence-equilibrium assump-
tion, are bound to be erroneous. Cousteix and Houdville(253) have
used a steady wall function in conjunction with a high-Reynolds-
number k – ε model(30), to simulate periodic turbulent boundary
layers. A similar approach was taken by Mankbadi and Mobark(255)

to predict pipe and boundary-layer flows. These studies demonstrate
that high-Re models, combined with wall functions, do not yield
adequate predictions of the wall shear stress. 

The applicability of low Reynolds number k – ε models to
unsteady flows has also been investigated by Justesen and
Spalart(256) for an oscillatory turbulent boundary layer under a free
stream that varied sinusoidally in time around a zero mean. Two
different low-Re k – ε models were used(30). Comparison with direct
numerical simulations by Spalart and Baldwin(262) showed that the
Jones-Launder model(30) performed better than Chien’s(44) model.
Fan et al(257) applied their own variant of distance-free, low-Re k – ε

LESCHZINER & DRIKAKIS TURBULENCE MODELLING AND TURBULENT-FLOW COMPUTATION IN AERONAUTICS 375



model to oscillating boundary layers for a range of frequencies, and
Dafa’Alla et al(258) did likewise with their own q – ς model. Their
calculations, compared with DNS and experimental data, showed
that the unsteady wall shear stress is not predicted satisfactorily.

Applications of full Reynolds-stress models to unsteady turbulent
wall flows are rare. Shima(259) employed a second-moment closure
— a modified version of Launder and Shima’s(93) model — to
compute boundary layers with periodic pressure gradient, demon-
strating good agreement with experiments and direct numerical
simulations. In particular, the tendencies towards re-laminarisation
and re-transition in the oscillating boundary layer were faithfully
reproduced, and the effect of the turbulent length scale in the free-
stream was correctly captured. 

Ha Minh et al(260) and Hanjalic et al(261) have also used second-
moment closures to compute the oscillating boundary layers investi-
gated by Jutesen and Spalart(256) with k – ε models, covering a range
of transitional and high-Re flows. The computations yielded a satis-
factory representation of the sudden turbulence bursts at the start of
the deceleration phase and the subsequent relaminarisation
phenomena at the lower range of Reynolds numbers. To a degree,
this illustrates the validity of the argument made in the introduction
in favour of including Reynolds-stress transport. However, the
unavoidable penalty is a significant increase in computational time,
which may be regarded as unacceptable in aerospace practice.
Recently, non-linear eddy-viscosity models have also been investi-
gated(263) in oscillating pipe and channel flows(264, 265), yielding
promising results.

As regards aerodynamic phenomena, unsteady RANS computa-
tions have been performed mainly for dynamic stall, buffet and
vortical flows around missiles and wings at high lift, some in the
context of flow-structure interaction. Validation studies of turbu-
lence models for some of these flows are documented in(184, 232, 233,

243, 249, 266) and references therein. Some illustrative examples are
shown below for the cases of dynamic stall and buffet. 

5.8.3 Dynamic stall 

The phenomenon of dynamic stall (DS) appears in high-angle
manoeuvres and is caused by the development of a vortical structure
known as dynamic-stall vortex (DSV). The DSV leads to a significant
(instantaneous) lift increase. Accurate prediction and, possibly,
control of the DS would enhance the performance in various aeronau-
tical applications. For example, the manoeuvrability of fighter aircraft
could be enhanced if the unsteady airloads generated by DS are
utilised in a controlled manner. Effective stall control of the retreating
blade of a helicopter rotor could also increase the maximum flight
speed by reducing rotor vibrations and power requirements. Simi-
larly, by controlling DS the maximum speed of wind generators and
turbine rotors can increase, thus resulting in more electrical energy
and reduced rotor vibration. The numerical simulation of the above
flow phenomena imposes both numerical and physical challenges.
This requires the development of accurate and efficient CFD methods
in conjunction with turbulence models.

Dynamic stall can be studied by considering the pitching motion
of an aerofoil beyond its static-stall incidence angle. There are
several phenomena associated with the pitching motion of the aero-
foil, the most important being the generation of intense vorticity on
the suction surface around the leading edge of the aerofoil. A
discrete vortex is formed, detaches from the body and convects
along the suction surface. This leads to large variations in lift, drag
and pitching moment. The phenomenon continues either with the
generation of weaker vortices, if the aerofoil remains above its static
angle of attack, or terminates if the aerofoil returns to an angle suffi-
ciently small that allows re-attachment of the flow. Dynamic-stall
flows have been under investigation for about three decades, and
significant progress has been made towards understanding the phys-
ical phenomena associated with the rapid pitching motion of an aero-
foil beyond its static-stall incidence angle.

In the 1970s, a number of experimental and theoretical investiga-
tions were performed. Telionis(267) discussed the flow in unsteady
boundary layers, including the derivation of analytic and semi-
analytic solutions. The first computational investigations of dynamic
stall were presented by Mehta(268), Gulcat(269) and McCroskey et
al(270). In the 1980s, the rapid progress in computer technology
allowed researchers to simulate unsteady flows by solving the full
Navier-Stokes equations(271, 272), while a comprehensive set of exper-
imental data for the light-stall regime was also published(273). The
papers by McCroskey et al(274), Carr(275) and Visbal(276) also provide
a comprehensive description of the DS processes. In the 1990s, the
effects of turbulence on dynamic stall have been the subject of
extensive experimental(277) and numerical studies(184, 232, 233, 243, 249,

266, 278). These studies have shown that the accuracy of simulations
depends strongly on the realism of the turbulence model employed.
Experience with algebraic models has shown that such approxima-
tions do not provide satisfactory results in most cases. Linear low-
Re, two-equation models seem to offer a reasonable balance between
accuracy and computational cost, but are not able to capture effects
arising from normal-stress anisotropy. 

Recently, non-linear EVMs and second-moment closures have
been used(232, 249) in dynamic-stall simulations. Figure 4 shows
comparisons of different model predictions with experiments(277) for
the unsteady airloads around an oscillating NACA 0015 aerofoil.
The models are the one-equation turbulence model of Spalart and
Allmaras (SA)(24), the linear low-Re EVM of Launder and Sharma
(LS)(41), and the cubic EVM of Craft et al(134). The computations
shown in Fig. 4 are for deep-stall conditions: the free stream condi-
tions correspond to Reynolds number of 1⋅95 × 106 and Mach
number of 0⋅29; the amplitude of the oscillation is 4⋅2°, the mean
incidence is 17° and the reduced frequency of oscillation is kf = 0⋅1.
The predictions of the cubic k – ε and SA models are comparable for
some parts of the unsteady cycle, but at larger incidence angles the
former model gives better results. Linear models, such as the
Launder-Sharma model, have been found(249) to be, in general, more
dissipative than the Spalart-Allmaras and non-linear EVMs. Compu-
tations using second-moment closures(232) have not shown any
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Figure 4. Unsteady drag coefficient  predicted by Barakos and
Drikakis(249) using the Spalart-Allmaras (SA)(24), Launder-Sharma
(LS)(41) and Craft et al (134) models for the oscillating NACA-0015 

aerofoil, M = 0⋅29, Rec = 1⋅95 × 106, amplitude of oscillation 4⋅2° and
mean incidence 17°. The experiments are from Piziali(277).



substantial improvements compared to non-linear models. This is in
contrast to experience on simpler oscillating boundary layers. It must
be said, however, that the mere inclusion of stress transport is not in
itself sufficient to procure satisfactory predictions. A great deal
depends, also in second-moment closure, on the details of the
closure assumptions and the particular form of the length-scale equa-
tion used. 

5.8.4 Transonic buffet

Transonic buffet arises in many aeronautical applications, such as
wing flow and internal flows around turbomachinery blades. The
aerodynamic performance in these applications depends strongly on
the unsteady shock–boundary-layer interaction. The latter may
change position around the aerofoil due to self-excited shock oscilla-
tions. Accurate prediction of buffet is dictated by both the accu-
racy/properties of the numerical discretisation scheme and the accu-
racy of the turbulence model. 

Experiments have been conducted by McDevitt and Okuno(279) for
the NACA-0012 aerofoil at Mach numbers between 0⋅7 and 0⋅8,
angles of incidence less than 5° and Reynolds number in the range of
106 and 1⋅4 × 107. McDevitt and Okuno(279) identified the incidence
angle and Mach number as the most important parameters for the
buffet onset. Their wind-tunnel results are particularly suitable for
validating CFD codes, because they are free from wall effects, in
contrast to previous experimental studies(280).

Figure 5 shows comparisons of numerical(266) with experimental
results(280) for the buffet onset around a NACA 0012 aerofoil. There
is a well-defined region of Mach number and incidence angle where
buffet occurs. Initially, four computations were performed at condi-
tions below the experimentally reported buffet onset, and steady-
state solutions were achieved (symbols in Fig. 5 labelled ‘no SIO’).
Afterwards, the incidence-angle was slowly increased to obtain
unsteadiness, and it was found that after the initial peak of the curve
the computations resulted either in periodic loads, thus indicating
buffet (symbols in Fig. 5 labelled ‘SIO’), or in steady-state flow. In
the latter case, the computations were repeated for a higher incidence
angle until buffet was captured. Once buffet was predicted, the inci-
dence angle was again decreased, and the computation was repeated
to check whether the experimental boundary (solid line in Fig. 5) for
buffet onset could be approached with greater precision. Figure 5
shows that very similar predictions are obtained with the linear
Spalart-Allmaras(24) and non-linear k – ω models(281).

6.0 CONCLUDING REMARKS
This article started with a somewhat provocative statement on the
importance given to turbulence modelling within the spectrum of
topics constituting aerodynamics for aeronautical engineering. Yet, it
proceeded to identify close to 300 pertinent papers — perhaps only
50% of the total, and excluding studies on simulation — providing
ample evidence of substantial research into turbulence modelling for
aerodynamics and the use of models in challenging aeronautical
flows. In considering the apparent contadiction contained therein,
one has to ask the question as to what the impact of the research has
been on aeronautical practice. 

The majority of design-related computations performed by
industry, especially those for lifting surfaces along an evolutionary
family of designs, are still based on viscous-inviscid interaction
methods, within which the effects of boundary layers are represented
by well-tuned integral relations. These methods are cheap, robust
and produce perfectly adequate results for attached flows corre-
sponding to near-cruise (design) conditions. In this context, turbu-
lence modelling does not arise explicitly and is a non-issue. Navier-
Stokes methods have been developed aggressively in recent years for
more challenging applications, and these are now being used for
component design and even full configurations, but mostly with
‘simple’ eddy-viscosity models, often algebraic and at most two-
equation forms. Although it is recognised that complex flows, espe-
cially those involving separation and strong vortical features, cannot
be predicted adequately with such models, the emphasis on
simplicity, computational speed and robustness in an industrial
context militates against the adoption of more advanced models. An
equally important factor has been, however, a great deal of uncer-
tainty (indeed, confusion) on the prospect of advanced turbulence
models providing adequate return for the added complexity. It is
certainly true to say that the current body of knowledge arising from
numerous validation studies does not provide unambiguous recom-
mendations.

This review has provided evidence that eddy-viscosity models are
fundamentally flawed and often perform poorly in flows featuring
separation, strong shock–boundary-layer interaction and 3D vortical
structures. More seriously, perhaps, the models do not display a
consistent behaviour across a wide range of conditions. In relatively
simple flows, which develop slowly and in which a single shear
stress (expressed in wall-oriented coordinates) is wholly dominant,
eddy-viscosity models can be crafted to give the correct level of this
stress and thus yield adequate solutions. This applies to near-wall
flows, thin wakes and even separated flows in which the separated
region is long and thin and hugs the wall. Another type of flow in
which eddy-viscosity models are adequate is one in which inviscid
features (pressure gradient, advection) dictate the mean flow, so that
the Reynolds stresses are largely immaterial, however wrong they
may be. The fact that many flows are an amalgam of shear layers
and regions in which turbulence is dynamically uninfluential
explains, in part, the moderate level of success of eddy-viscosity
models. Among two-equation eddy-viscosity models, SST forms
perform fairly well (at least in 2D flow), due to the limiter which
prevents the shear stress from responding to the strain to the extent
dictated by the stress-strain relationship. The length-scale equation is
a key area of uncertainty and its precise form greatly affects model
performance. There is some evidence that models using the turbulent
vorticity as a length-scale variable near the wall perform (margin-
ally) better than models based on the dissipation-rate equation,
although it must be stressed that performance depends greatly on the
nature of viscosity-related damping functions and the numerical
constants in the length-scale equation.

Much of the recent research in turbulence modelling has focused
on the development of anisotropy-resolving models. Of these,
Reynolds-stress-transport models are the most ‘complete’ and funda-
mentally secure forms, in the sense that they come closest to the
exact representation within the constraints of closure at second-
moment level. These models are complex and pose particular numer-
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Figure 5. Transonic buffet onset for the NACA-0012 aerofoil as
predicted by the Spalart-Allmaras model (crosses) and a non-linear 
k – ω model(281) (squares); solid line represents experimental data;
SIO stands for shock-induced oscillations (reprinted from Int J Heat

and Fluid Flow, 21, Barakos, G. and Drikakis, D. (266), Numerical 
simulation of transonic buffet flows using various turbulence closures,

pp 620-626, 2000).



ical challenges, but are now used to compute flows around practical
configurations. The weak elements of such models are the length-
scale equation and the (influential) pressure-strain model. While
Reynolds-stress models often give better predictions than eddy-
viscosity models in many complex ‘laboratory’ flows, they cannot
be said to guarantee better solutions in practice. Current forms are
therefore unlikely to be adopted in general industrial methods,
except for analysing a narrow range of complex flow problems in a
pre-design environment. Non-linear eddy-viscosity models are, at
best, approximations of Reynolds-stress transport models — these
forms being referred to as Explicit Algebraic Reynolds-stress
Models (EARSM). Hence, clearly, their performance cannot be
superior to that of their parents. In particular, EARSMs ignore stress
transport and are based on relatively simple (linear) closure forms
for the dissipation rate and pressure-strain process. They are,
however, numerically simpler and more economical than stress-
transport closure and are therefore gaining in popularity.

Numerical aspects play an important role in turbulent-flow
computations in terms of both accuracy and efficiency. Numerical
methods encompass numerical dissipation which acts to regularise
the flow, thereby allowing shock propagation to be captured physi-
cally realistically even if it is not fully resolved on the computational
mesh. One develops numerical schemes with two competing criteria
in mind: a desire for high accuracy coupled with protections against
catastrophic failure due to nonlinear wave steepening or unresolved
features. Nonlinear limiter mechanisms in high-resolution methods
guard the methods from such catastrophic failures by triggering
entropy-producing mechanisms that safeguard the calculation when
the need arises. The two key questions are: (i) what criteria should
be used to design the nonlinear mechanism that triggers the entropy
production, and (ii) to what extent numerical dissipation double-
counts effects which are supposed to be captured by turbulence
modelling. 

The algorithmic implementation of turbulence models can signifi-
cantly affect the efficiency of turbulent-flow computations. Slow
convergence rates or convergence stall have been experienced by
many researchers in the implementation of linear and non-linear
EVMs, as well as second-moment closure. Implicit methods seem to
offer better stability properties and covergence rates than explicit
schemes, but they make the code development more complicated.
Additionally, in unsteady flows the physical time scales ultimately
decide about the magnitude of the time step, thus using implicit
schemes in this case may be pointless. In general, the CPU over-
heads of non-linear EVM and RSTM against linear models are typi-
cally of order 1⋅2-1⋅8 and 1⋅5-3, respectively. 

It is not easy to predict the future of turbulence modelling in aeronau-
tics. It is most likely that progress will be highly incremental, with a
trend being towards using well-validated models or model types for
different problems (a ‘horses-for-courses’ approach). The most complex
approaches likely to be used practice are EARSMs which need,
however, to include approximate treatments of stress transport. Such
approximations are emerging, but need to be verified for 3D conditions. 

Large eddy simulation (LES) beckons in the distance as an alter-
native approach to RANS modelling, but poses substantial chal-
lenges in high-Re near-wall flows, especially in the presence of
separation from gently curved surfaces, where resolution and thus
computing-cost issues are critical. LES is certainly likely to be a
useful (though expensive) approach in flows that are not strongly
affected by viscous near-wall features. 

Over the past decade, there has also been an increasing amount of
evidence that high-resolution numerical methods for hyperbolic
partial differential equations have an embedded (or ‘implicit’) turbu-
lence model (see Rider and Drikakis(282), and references therein). It
has been shown(282) that ‘implicit’ modelling (or monotone inte-
grated LES (MILES)(283)) includes elements of nonlinear eddy
viscosity, modelling scale-similarity and an effective dynamic
subgrid-scale model. The MILES approach may be particularly
useful in the context of coarsely resolved LES (very large eddy
simulation (VLES)(284)). However, further development and valida-

tion is required, especially in relation to viscous near-wall features. 
Finally, the detached eddy simulation (DES) method of Spalart et

al(285), or a related strategy, may be a possible route to economically
tenable simulations for complex configurations, but there are several
important fundamental and practical questions that need to be
addressed and resolved in relation to the coupling of near-wall
RANS models to the outer LES region, on which DES is based. 
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